Elnes

2010

MODULAR ELECTRONIC DEVICES

TECHNICALCATALOGUE

3「ユレコப

www．elkoep．com

ELTS

ELKO EP, s.r.o.

Palackého 493 | 76901 Holešov, Všetuly | Czech Republic
Tel.: + 420573514211 | Fax: +420 573514227 | e-mail: elko@elkoep.com | www.elkoep.com
Released 4/2010 | All rights reserved | © Copyright ELKO EP, s.r.o. 2010 | Issue I.

We have been developing and producing modular electronic devices over 16 years. We have experienced dynamic progress: from a family manufacturer to a successful company with 230 employes, with our own development facility and modern production technologies. Thanks to this tradition and wide range of experiences, we started to produce our own system of intelligent electro-installation, iNELS as well as wireless system, RF Control. Presently, we have in our assortment also a wide range of electrotechnical products ETI (circuit breakers, residual current devices, fuses etc.). In general, we can provide you all devices that you need for your electro-installation - from simple, through advance up to sophisticated. All products are designed and produced according to ISO and European standards. We offer our customers complex solutions, technical advice, support, consulting service at optimal prices. We bring those solutions, which will save your time and money, provide you a higher level of security, through comfortable operation satisfying your expectations. Due to our strong development centre, we are continuously inovating and developing new devices, so they maximally suit to you - our customers and users of our products. We can implement your needs into functionality of our devices - basically many new products have been developed this way. Product adjusting according to customers needs is namely visible on our system iNELS. With our product range, we have been expanded to foreign markets (branch offices in Russia, Poland, Hungary, Slovakia, Romania, Ukraine and worldwide export in tens more countries) so as supplier and partner to leaders in electro-technical business or individually. In March 2010 we have established a brand new branch office: ELKO EP USA, Inc. branch office is located in the fastest growing region of the US and has a high concentration of communication and IT services and construction industry in state North Carolina. We believe, that even on the huge American market, we can offer an interesting products and comparing to European standards, we can meet the different demands of this continent.

Company profile	
Certificates	2 10 \mathbf{y}

Time relays 39

GSM communicator GD-04"David"	$40-41$
Time relays review	$42-44$

Single-function time relay	$45-46$
CRM-81J, CRM-83J	

| Delay OFF without supply voltage CRM-82T0 | 47 |
| :--- | :--- | :--- |

| Delay ON star/delta CRM-2T | 49 |
| :--- | :--- | :--- |

Multifunction time relay

| CRM-91H, CRM-93H, CRM-9S | $52-53$ |
| :--- | :--- | :--- |

| Economic version CRM-61 | 54 |
| :---: | :---: | :---: |

| Digital time switch SHT-1, SHT-1/2, SHT-3, SHT-3/2 | 55 |
| :--- | :--- | :--- |

| Programmable digital relay PDR-2/A, PDR-2/B | $56-57$ |
| :--- | :--- | :--- |

| PLUG-IN - PRM-91H/11, PRM-91H/8, PRM-92H, PRM-2H | $58-59$ |
| :--- | :--- | :--- |
| Sun | |

| Super-multifunction relay SMR-T, SMR-H, SMR-B | $60-61$ |
| :--- | :--- | :--- |
| Stiras | |

Staircase switch CRM-4
62

Power and auxiliary relays 64

Power and auxiliary relays review	$65-66$
Modular VS116K, VS116U, VS308K, VS308U, VS316/24,VS316/230	$67-68$
Plug-in	$69-70$
782,750	

Dimmers 71

Dimmers review	72
Staircase switch with dimming	73
DIM-2	

Controlled dimmer	73
DIM-5	74
DIM 14	7

| DIM-14 | 75 |
| :--- | :--- | :--- |

DIM-6
DIM-6-3M-P
DIM-15
SMR-S, SMR-U
Power supplies
82

Power supplies review	$83-84$
Line DR	85
Line PS - PS-10, PS-30, PS-100	$86-87$
Power supplies ZSR-30, ZNP-10	88
Bell transformer ZTR	89

Other modular devices 91

Twilight switches	
Twilight switch SOU-1	92
Twilight switch with digital time switch SOU-2	93
Twilight and light switch SOU-3	94
Memory relay	95
MR-41,MR-42	96
Controlling and signalling units	9
USS	

Monitoring relays	98
Monitoring relays review Monitoring voltage relays - analog, 1-phase HRN-41/42 HRN-33, HRN-34, HRN-35, HRN-37 HRN-63, HRN-64, HRN-67 Monitoring voltage relays - analog, 3-phase Relay for monitoring phase sequence and failure HRN-55, HRN-55N Relay for monitoring over/undervoltage and phase failure HRN-57, HRN-57N Relay for monitoring over/under voltage, phase sequence and failure HRN-54, HRN-54N Relay for monitoring phase sequence and failure HRN-56 (120, 208, 240, 400, 480, 575) Relay monitoring 3-phase mains HRN-43, HRN-43N Monitoring current relays PRI-32 PRI-51 PRI-52 PRI-41, PRI-42 Current transformer SR for monitoring current relays PRI (accessories) Relay monitoring $\cos -\varphi$ COS-1 Level monitoring level Level switch HRH-1 Level switch HRH-5 Level switch set HRH-4 Level switch HRH-6 Level sensors to level switches SHR-1M, SHR-1N, SHR-2, SHR-3 (accessories)	$99-100$ 101 $102-103$ $102-103$ 104 105 106 107 $108-109$ 110 111 112 113 114 115 $116-117$ 118 119 $120-121$ 122
Thermostats	124
Thermostats review Analog thermostats Modular thermostat TER-3 (A, B, C, D, G, H) Modular thermostat TER-3 (E, F) Modular 2-stage thermostat TER-4 Modular thermostat for controlling temperature of motor winding TER-7 Flush mounted thermostats Thermo - ATR, ARF, ATC Two-level thermostat with IP65 TEV-1 Single-level thermostat with IP65 TEV-2, TEV-3 Thermostat TEV-4 Hygro-termostat RHT-1 Hygrostat RHV-1 Digital thermostat Modular multifunction digital thermostat TER-9 Flush mounted thermostats Thermo - DTR, DTF, DTC Accessories Thermal sensors to thermostats TC, TZ, PT-100	$\begin{gathered} 125-126 \\ 127 \\ 128 \\ 129 \\ 132 \\ 133 \\ 135 \\ 136 \\ 137 \\ 138 \\ 139 \\ \\ 130-131 \\ 134 \\ 140 \end{gathered}$
Technical information	151
Main instructions (for correct use of products) Product loadability Electromagnetic compatibility of products EMC chart	$\begin{gathered} 152 \\ 153-154 \\ 155 \\ 156 \end{gathered}$
Other informatione	157
Products cases, House service board Products packing Products packing Dimensions Products in house coming from us Examples of usage Production technology Support of project designing We export to	$\begin{gathered} 150 \\ 158 \\ 159-162 \\ 163-170 \\ 172-173 \\ 174-175 \\ 176 \\ 177 \end{gathered}$

Modular electronic devices

Separately selling items, additional to David:

- Backup module GD-04A, which gives David ability to operate approx.12-24 hours. without external supply.
- With help of DTMF module GD-04D, you can control David's output relay by calling and by inserting of numeral code on the mobile phone's keypad.
- Connecting cabel GD-04P connects David with USB port, for GDLink program setting.
- Radio modul GD-04R allows to activate inputs (A-D) with the help of wireless buttons and detectors from serie OASIS. Module allows also transfer of David's output relay status, onto wireless receivers UC and AC from serie OASIS. Relay X and Y in David can be localy controlled by wireless buttons serie RC-8x (it means that connected appliance can be controlled by mobile phone and remote control too) Heating can be controlled by cooperation with wireless thermostats from the serie TP-8x (local control or remote mobile phone control)

SIM card for David - can be any kind

- We suggest a card with tariff, because the prepaid cards take a risk of failure due to overdrawal credit.

Setting of David's functions:

- By the form on Internet
- By the computer with program GD Link
- SMS message

Příslušenství:

- The power adapter is included

Usage example:

I want to turn on the watering system....and also turn on the air condition - it's tropical day.

What should I do:
Connect relay contact X onto a switching of watering system. Relay contact Y connect onto a switching of air condition in the house.

On David, in which is a working SIM card, send setting SMS for adjustment of text and phone numbers.

PC,ARX,Turn on watering,DRX,Turn off watering PC,ARY,Turn on air condition, DRY, Turn off air condition

It could be profitable, to switch up watering for the advanced defined time (for example for one hour -3600 sec). That's why we send a setting SMS.

PC, TMX, 3600

By the order (SMS) Turn on watering, watering will be active for an hour. By the SMS Turn on air condition, we turn air condition on, while SMS Turn off air condition, will put it out of operation.

How will I connect it?

Advise:

After switching up the watering for preset time, we can stop it anytime, by order turn off watering.

Basic description:

MODULE

- Multifunction = 10 funktions.
- UNI supply voltage = ACIDC $12-240 \mathrm{~V}$.

PLUG-IN

- Plug-in type enables easy exchange.
- 16 A changeover.
- 11 and 8 -pin socket.

DIGITAL

- Switching based on real-time.
- 1 or 2 channels
- Weekly, monthly, and yearly program
- Back lit display

Time relays

WIRING BOX INSTALLATION

- Under switch placement
- 4-wire connection (load 16 A)

Single-function
 Time relays

Chart 1．Version－DIN rail mounting

	Type	¢									崖		$\sum_{z}^{N} \sum_{i}^{N}$		즃		$\sum_{\substack{4} \frac{1}{c}}^{\substack{0}}$	$\stackrel{N}{\tilde{N}}$	$\begin{aligned} & \substack{x \\ \\ \\ \hline} \end{aligned}$					$\begin{aligned} & \text { 둥 } \\ & \substack{1 \\ i} \end{aligned}$	甹	$\underset{\sim}{\text { N}}$
$\begin{aligned} & \text { 듬 } \\ & \text { a } \end{aligned}$	1－MODULE	－		－	－	－	－－	－	－	－	－	－	－	－	－	－	－	－								
	2－MODULE																				－	\bullet	－			
	3－MODULE																		－	－						
	PLUG－IN																							－	\bullet	\bullet
	Under the switch																									
$\begin{aligned} & \text { 은 } \\ & \text { 言 } \\ & \text { 妾 } \end{aligned}$	Rotapy switch	－		－	－	－	－\bullet	－	－	－	－	－	－	－	－	－	－	－						－	－	\bullet
	Button																		－	－	－	\bullet	－			
	Sliding switch															\bullet	－									
	External potenciometer										－	－														
$\begin{aligned} & \text { 受 } \\ & \text { E. } \end{aligned}$	Delay OFF after switch off the Input supply							－																		
	Delay ON	\bullet				\bullet		－	－	－	\bullet		\bullet				－	－	－	－				\bullet	－	
	Delay 0FF			－			－		－	－	－		－				－		－	－				－	－	
	Symmetrical cycler starting with delay									－	\bullet		\bullet						－	－				－	－	
	Delay OFF after impulse OFF				－		－	－	\bullet	－	\bullet		\bullet				－		－	－				－	－	
	Symmetrical cycler starting with impulse									－	\bullet		－				\bigcirc		－	－				－	－	
	Starcase switch								－	－	－		\bullet			－	\bullet		－	－				－	\bullet	
	Impulse shift									－	\bullet		\bullet						－	\bullet				\bullet	－	
	Memory（impulse）relay									－	－		\bullet											－	－	
	Impulse generator								－	－	\bullet		\bullet						\bullet					\bullet	\bullet	
	Delay ON at switch on controlling contact																		－	－						
	Asymmetric cycler starting with delay											\bullet	－	\bullet					\bullet							\bullet
	Asymmetric cycler starting with impulse											－	－	－					\bullet							－
	Delay ON star／delta														\bullet				\bullet							
	Switchin in real time																				－	\bullet	－			
	Impuls relay in delay ON																									
$\stackrel{\cong}{\underline{\text { ¹ }}}$	0．1－1s	－	－	－	－	－	－	－	－	－	－	－	－	－	\bullet			\bullet						\bullet	－	\bullet
	1－10s	－	－	－	－	－	－-	－	－	－	－	－	－	－	－			－						－	－	\bullet
	0．1－1 min	－	－	－	－	－	－	－	－	－	－	－	－	－	－			－						－	－	\bullet
	1－10 min	－	－	－	－	－	－-	－	－	－	－	－	－	－	－			－						－	－	\bullet
	$0.1-1 \mathrm{hrs}$	－	－	－	－	－	－－	－	－	－	－	－	－	－	\bullet			\bullet						\bullet	－	－
	1－10 hrs	－	－	－	－	－	－－		－	－	－	－	－	－	－			－						－	－	\bullet
	0．1－1 day									－	－	－	－	－	－			－						－	－	\bullet
	1－10 days								\bullet	－	－	\bullet	－	－	\bullet			\bullet						\bullet	－	\bullet
	3－30 days											\bullet	－	－	－											\bullet
	10－100 days											\bullet	－	－	－											\bullet
	30－10 min															－	－									
	99 h 59 min 59 s																		\bullet	－						
	Day																				\bullet	－	－			
	Week																				\bullet	－	－			
	Month																					\bullet	－			
	Year																					\bullet	－			
$\begin{array}{\|l\|} \hline \text { 立宮 } \\ \text { 言 } \end{array}$	230 VAC	－	－	－	－	－	－	－	－	－	－			－	－	－	－	－	－	－	－	－	－			
	12－240 VAC／DC	－	－	－	－	－	－－	－	－	－	－	\bullet	－	－				－	－	－	－	－	－	－	－	\bullet
	$12-240 \mathrm{VaC}$												\bullet													
는	1x changeover／SPDT 8A																	－					－			
	1x changeover／SPDT 16A	－	－	－	－					－	\bullet	－		\bullet		\bullet					\bullet	\bullet		\bullet		
	2 x changeover 8 A							－																	－	\bullet
	2 x changeover 16 A														\bullet			－	－	－	O	0				
	3x changeover／3PDT 8 A					－	－－			\bullet	－															
	Static output（triak）												\bullet													
	1x N0 16A																\bullet									

Chart 2．Version－mounting into installation box（KU68）

	Type		$\underset{\sim}{\infty}$
佱	A－delay off on entrering edge		
	B－delay off on down－ ward edge		
	C－delay off on down－ ward edge		
	D－cycler－flasher impulsem		
	E－puls shift		
	F－delay on		
	G－pulse relay		
	H－impulse relay with delay		
	I－delay on after swit－ ched off		
	j^{*}－cycler starting with gap．＊$=$ Function j is valid only for SMR－B		
	0．1－1s	－	－
	1－10s	－	－
	0．1－1 min	－	－
	1－10 min	－	－
	0．1－1 h	－	－
	1－10h	－	－
	0．1－1 day	－	－
	1－10 days	－	－
$\begin{aligned} & \text { 하 } \\ & \frac{\pi}{0} \\ & \vdots \\ & \text { 츨 } \\ & \text { ज } \end{aligned}$	AC 230 V	－	－
	1x triac 1x NO AgSnO	－	－

Single-function time relay CRM-81J, CRM-83J

- Single-function and single-time relay with possibility of fi ne time setting by a potentiometer (within the frames of a particular time range)
- Suitable for applications where function and time requirements are known
- Time switch, possible to be used for pump decay time after switching heating off , switching of fans.
- Choice of 3 functions:

1) ZR - Delay $O N$
2) ZN -Delay OFF
3) BL - Repeat Cycle

- Functions can be controlled by supply voltage or time scale control input.: ($0.1 \mathrm{~s}-1 \mathrm{~s} / 1 \mathrm{~s}-10 \mathrm{~s} / 6 \mathrm{~s}-60 \mathrm{~s} / 1 \mathrm{~min}-10 \mathrm{~min} / 6 \mathrm{~min}-60 \mathrm{~min} / 1 \mathrm{~h}-10 \mathrm{hrs}$)
- Universal voltage range AC/DC $12-240 \mathrm{~V}$
- Output contact: CRM-81J: 1x changeover/ SPDT 16A CRM-83J: $3 x$ changeover/ 3PDT 8 A
- Red LED output indicator
- 1-MODULE, DIN rail mounting

Technical parameters
Functions:

Supply terminals:
Voltage range:
Burden:
Voltage range:
Consumption (apparent/loss):
Supply volag

Output
Number of contacts:
Current rating:
Breaking capacity:

Inrush current:
Switching voltage:
Min. breaking capacity DC:
Output indication:
Mechanical life:
Electrical life (AC1):

Control

Consumption of input:
Load between S-AZ:
Control terminals:
Max. capacity of cable control:
-without connected glow-lamps: - with connected glow-lamps:

Impulse length:

Reset time:
Other information
Power of control input:
Storage temperature:
Electrical strength:
Mounting/DIN rail:
Protection degree:
Operating position:
Overvoltage cathegory:
Pollution degree:
Max. cable size $\left(\mathrm{mm}^{2}\right)$:
Dimensions:
Weight:
Standarts:

Supply voltage tolerance:	$-15 \% ;+10 \%$
Supply indication:	green LED
Time ranges:	$0.1 \mathrm{~s}-10 \mathrm{~h}$ (in 6 alternate)
Time setting:	potentiometer
Time deviation:	$5 \%-$ mechanical setting
Repeat accuracy:	$0.2 \%-$ set value stability
Temperature coefficient:	$0.01 \% /{ }^{\circ} \mathrm{C}$ at $=20^{\circ} \mathrm{C}$

(RM-81J	(RM-83J
ZR - delay ON / ZN - delay OFF/ BL- cycler 1:1	
A1-A2	
AC/DC 12-240V (AC $50-60 \mathrm{~Hz}$)	
AC0.7-3VA / DC 0.5-1.7W	
AC $230 \mathrm{~V} / 50-60 \mathrm{~Hz}$	
AC max. 12 VA/1.3W	AC max. $12 \mathrm{VA} / 1.9 \mathrm{~W}$
-15\%; +10\%	
green LED	
$0.1 \mathrm{~s}-10 \mathrm{~h}$ (in 6 alternate)	
potentiometer	
5% - mechanical setting	
0.2% - set value stability	
$0.01 \% /{ }^{\circ} \mathrm{C}$, at $=20^{\circ} \mathrm{C}$	
1x changeover/ SPDT (AgNI / Silver Alloy)	3x changeover/ SPDT (AgNI / Silver Alloy)
16 / AC1	8A/AC1
$4000 \mathrm{VA} / \mathrm{AC1}, 384 \mathrm{~W} / \mathrm{DC}$	$2000 \mathrm{VA} / \mathrm{AC1}, 192 \mathrm{~W} / \mathrm{DC}$
$30 \mathrm{~A} /<3 \mathrm{~s}$	$10 \mathrm{~A} /<3 \mathrm{~s}$
250 V AC1 / 24 V DC	
500 mW	
red LED	
3×10^{7}	
0.7×10^{5}	
AC 0.025-0.2 VA / DC 0.1-0.7 W (UNI), AC0.53 VA (AC 230 V)	
Yes (UNI), Yes (AC 230 V)	
A1-S	
0.14 F (UNI), 1.36 ${ }^{\text {F }}$ ($230 \mathrm{~V} / 50-60 \mathrm{~Hz}$)	
(UNI), glow lamps cannot connected/NO	(UNI), glow lamps cannot connected/NO
9 nF (AC 230V), max.20pcs(1pc-1mA)	9 nF (AC230V), max.20ps(1 pc -1mA)
min. 25 ms / max. unlimited	
max. 150 ms	
$-20^{\circ} \mathrm{C}$ to $+55^{\circ}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.131{ }^{\circ} \mathrm{F}\right)$	
$-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$	
4 kV (supply-output)	
DIN rail EN 60715	
IP 40 from front panel / IP20 terminals	
any	
III.	
2	
solid wire max. 1×2.5 or 2×1.5 / with sleeve max. 1×2.5 (AWG 12)	
$90 \times 17.6 \times 64 \mathrm{~mm}\left(3.5^{\prime \prime} \times 0.7^{\prime \prime} \times 2.55^{\prime \prime}\right)$	
(UNI) - 62 g (2.2 oz.), (230) - 60 g (2.1 oz.)	(UNI) -86 g (3 oz.$)$, (230) - 82 g (2.9 oz.)
EN 61812-1	1, EN 61010-1

Symbol
(RM-81J

(RM-83J

It is possible to connect load between S-A2 (e.g. contactor, control of light or any other device), without disturbing a correct function of relay (load is energized while the switch is 0 N .)

Example of an order

CRM-81J/230,ZR10s

1 x changeover contact, voltage AC 230 V , function: delay 0 N , time 1-10 s
CRM-83J/UNI, BL1h
$3 x$ changeover contact, voltage AC/DC 12-240 V, function: cycler begin. with impulse, time 6-60 min

Single-function time relay CRM-81J, CRM-83J

Functions

Note: the function ZR and ZN is controlled by supply voltage and control input t.m. when it comes to failure and refreshing the supply voltage, the relay automatically makes one cycle

Time range

	1 s	10 s	1 min	10 min	1 h	10 h
\min	0.1 s	1 s	6 s	1 min	6 min	1 h
\max	1 s	10 s	60 s	10 min	60 min	10 h

Description

CRM-82TO /UNI: 8595188137614

- „True OFF" relay - relay timing without supply voltage
- Sample of use: back-up source for Delay OFF in case of voltage failure (emergency lighting, emergency respirator, or protection of el. controlled doors - in case of fire)
- 2 time functions adjustable by rotary switch:
a - On Delay (Power 0n) - after supply failure relay times for time t and switches off
e - Off Delay (S Break)
- Time range (adjustable by rotary switch and fine setting by potentiometer): 0.1s-10 min
- Universal supply voltage AC/DC 12-240 V
- Output contact: $2 x$ changeover/DPDT- 8 A
- Output status indicated by LED (only in case of supply voltage connection)
- Clamp terminals
- 1-MODULE, DIN rail mounting

Doublestage delay unit SJR-2

- For gradual switching of heavy wads (for example electrical heating), prevents current strokes in the main
- Function: $2 x$ Delay ON (2 time relays in one)
- Time scale $0.1 \mathrm{~s}-10$ days divided into 10 time ranges:
$0.1 \mathrm{~s}-1 \mathrm{~s} / 1 \mathrm{~s}-10 \mathrm{~s} / 0.1 \mathrm{~min}-1 \mathrm{~min} / 1 \mathrm{~min}-10 \mathrm{~min} / 0.1 \mathrm{~h}-1 \mathrm{~h} / 1 \mathrm{~h}-10 \mathrm{hrs} / 0.1$ day -1 day $/ 1$ day -10 days $/ 0 \mathrm{~N} / 0 \mathrm{FF}$
- Times T1 and T2 are independantly adjustable
- T1 and T2 are switched on after supply voltage connection

■ Rought time setting via rotary switch

- Voltage range: AC 230 V or $\mathrm{AC} / \mathrm{DC} 12-240 \mathrm{~V}$
- Output contact: $2 \times$ changeover /DPDT 16 A
- Output indication: multifunction red LED, flashing at certain states
- 1-MODULE, DIN rail mounting

Technical parameters	SJR-2
Number of functions:	2 x delay ON
Supply terminals:	A1-A2
Voltage range: \quad ¢	AC/DC 12-240V (AC $50-60 \mathrm{~Hz}$)
Burden:	AC0.7-3VA/ DC $0.5-1.7 \mathrm{~W}$
Voltage range:	AC $230 \mathrm{~V} / 50-60 \mathrm{~Hz}$
Power input (apparent/loss): $\sim \sim$	AC max. $12 \mathrm{VA} / 1.3 \mathrm{~W}$
Supplyvoltagetolerance:	-15\%; +10\%
Supplyindication:	green LED
Time ranges:	0.1 s-10 days
Time setting:	rotaty switch and potentiometer
Time deviation:	5% - mechanical setting
Repeat accuracy:	0.2% - set value stability
Temperature coefficient:	$0.01 \% /{ }^{\circ} \mathrm{C}$, at $=20^{\circ} \mathrm{C}\left(0.01 \% /{ }^{\circ} \mathrm{F}, \mathrm{at}=68{ }^{\circ} \mathrm{F}\right)$

Function

Description

Time ranges

	0.1-1s		1-10s		0.1-1 min		1-10 min		0.1-1 h
$m_{10,1)^{\frac{n}{10}}}^{1 / 4} \text { d }$		$m_{10,11^{10}}^{10 / 4} \text { d }$		$m_{10,1{ }^{\frac{n}{10}} 1 / 4} \text { d }$		$m_{10 \leq 1} \frac{h}{10} 1 / 61 \text { d }$		$m_{10, ~} \frac{1^{\frac{h}{10}}}{10 / 41} \text { d }$	
	1-10 hrs		0.1-1 day		1-10 days		only ON		only 0FF

- Designated of delay On of motors star/delta
- Voltage range: AC $230 \mathrm{~V}, \mathrm{AC} / \mathrm{DC} 12$ - 240 V
- Output contact: $2 x$ changeover/ DPDT 16 A
- Output indication: multifunction red LED
- 1-MODULE, DIN rail mounting
- Time t1 (delta) - time scale 0.1 s - 100 days devided into 10 time ranges
- rough time setting by rotary switch
- Time t2 (delay) between λ / Δ :
- time scale $0.1 \mathrm{~s}-1 \mathrm{~s}$
- fine time setting by potentiometer

Function

Delay ON star / delta

Time ranges t 1 :

Asymmetric cycler CRM-2H

- Cycler with independent adjustable switch ON/OFF
- It is used for regular room ventilation, cyclic dehumidification, light control, circulating pumps, noon signs, etc.
- 2 time functions:

1) Cycler beginning with pulse
2) Cycler beginning with pause

- Function choice is done by an external jumper of terminals S-A1
- Time scale $0.1 \mathrm{~s}-100$ days devided into 10 time ranges:
($0.1 \mathrm{~s}-1 \mathrm{~s} / 1 \mathrm{~s}-10 \mathrm{~s} / 0.1 \mathrm{~min}-1 \mathrm{~min} / 1 \mathrm{~min}-10 \mathrm{~min} / 0.1 \mathrm{hrs}-1 \mathrm{~h} / 1 \mathrm{hrs}-10 \mathrm{hrs} / 0.1$ day -1 day $/ 1$ day -10 days / 3 days - 30 days / 10 days - 100 days)
- Rough time setting via rotary switch
- Voltage range: AC 230 V or AC/DC $12-240 \mathrm{~V}$
- Output contact: 1x changeover/SPDT 16 A
- Output indication: multifunction red LED
- 1-MODULE, DIN rail mounting
 (jumper S-A1)

Function

Description

CRM-2HE/UNI + potetiometr: 8595188142069
Potentiometr for CRM-91HE, CRM-2HE : 8595188125215

- Control by external control unit - potentiometer (can be for example on switch board doors or in panel)
- CRM-91HE: multifunction time relays

10 function - 5 time functions controlled by supply voltage
-4 time functions controlled by control input
-1 function of latching relay time scale $0.1 \mathrm{~s}-10$ days divided into 10 ranges
($0.1 \mathrm{~s}-1 \mathrm{~s} / 1 \mathrm{~s}-10 \mathrm{~s} / 0.1 \mathrm{~min}-1 \mathrm{~min} / 1 \mathrm{~min}-10 \mathrm{~min} / 0.1 \mathrm{hrs}-1 \mathrm{hrs} / 1 \mathrm{hrs}-10 \mathrm{hrs} / 0.1$ day -1 day / 1 day - 10 days / only ON / only OFF)

- CRM-2HE: asymmetric cycler

2 time function - cycler beginning with pulse

- cycler beginning with gap
function selected via external wired link on control input S-A1
- CRM-91HE, CRM-2HE:
- Universal supply voltage AC/DC 12-240 V
- Output contact: $1 x$ changeover/SPDT 16 A
- 1-MODULE, DIN rail mounting
- Possible to connect external potentiometer - max. distance 10 m (32.8 ft .) from relay

Technical parameters	CRM-91HE	CRM-2HE
Number of functions:	10	2
Supply terminals:	A1-A2	
Voltage range:	AC/DC $12-240 \mathrm{~V}(\mathrm{AC} 50-60 \mathrm{~Hz})$	
Burden:	AC 0.7-3VA / DC 0.5-1.7 W	
Supply voltage tolerance:	-15\%; +10\%	
Supply indication:	green LED	
Time ranges:	0.1 s-10 days	s-100 days

CRM-91HE, CRM-2HE
Potentiometer at CRM-91HE, CRM-2HE

Connection
 Description
 CRM-91HE

CRM-2HE

Potentiometer

Potentiometer:	$47 \mathrm{k} \Omega$, linear
Protection degree:	IP 65 from front side/ IP 20 from back side
Max. cable size $\left(\mathrm{mm}^{2}\right):$	$1.5 \mathrm{~mm}^{2}$ with sleeve / without sleeve max.2.5 (AWG 12)
Weight:	$15 \mathrm{~g}(0.5$ oz.)
Dimensions:	see page Dimensions

- Multifunction time relay can to be used for electrical appliances, control of lights, heating, motors, pumps and fans (10 functions, 10 time ranges, multi-voltage, 16Amps or 3x8Amps contacts)
- Fulfills all requirements for time relays
- 10 functions: - 5 time functions controlled by supply voltage
- 4 time functions controlled by control input - 1 function of latching relay
- Comfortable and well-arranged function and time-range setting by rotary switches
- Time scale $0.1 \mathrm{~s}-10$ days divided into 10 ranges: $(0.1 \mathrm{~s}-1 \mathrm{~s} / 1 \mathrm{~s}-10 \mathrm{~s} / 0.1 \mathrm{~min}-1 \mathrm{~min} / 1 \mathrm{~min}-10 \mathrm{~min} / 0.1 \mathrm{hrs}-1 \mathrm{hrs} /$ 1 hrs -10 hrs / 0.1 day -1 day/ 1 day - 10 days / only ON / only OFF)
- CRM-91H, CRM-93H: Universal supply voltage AC/DC $12-240 \mathrm{~V}$ or AC 230 V ,

Output contact: CRM-91H: $1 x$ changeover/SPDT 16 A; CRM-93H: $3 x$ changeover/SPDT 8 A

- (RM-95: Universal supply voltage AC 12-240 V AC 12-240 V, absolutely noise-less switching 1x static contactless output (triac) $01.7 \mathrm{~A}(60 \mathrm{~A} /<10 \mathrm{~ms})$, switches potential A1
- Multifunction red LED output indicator flashes or shines depending of status
- 1-MODULE, DIN rail mounting

Function

On Delay (Power On)
When the input voltage U is applied, timing delay t begins. Relay contacts R change state atter time delay is complete. Contacts R return to their shelf state when input voltage U is removed. Trigger switch is not used in this function.

Interval (Power On)
When input voltage U is applied, relay contacts R change state immediately and timing cyde begins. When time delay is complete, contacts return to shelf state. When input voltage U i s removed, contacts will also return to their shelfstate. Trigger switch is not used in this function.

Repeat Cycle (Starting Off)
When input voltage U is applied, time delay t begins. When time delay t is complete, relay contacts R change state for time delay t. This cycle will repeat until input voltage U is removed. Trigger switch is not used in this function.

Repeat Cycle (Starting On)
When input voltage U is applied, relay contacts R change state immediately and time delay t begins. When time delay t is complete, contacts return to their shelf state for time delay t. This cycle will repeat until input voltage U is removed. Trigger switch is not used in this function.

Off Delay (S Break)
Input voltage U must be applied continuously. When trigger switch S is closed, relay contacts R change state. When trigger switch S is opened, delay t begins. When delay t is complete, contacts R return to their shelf state. If trigger switch S is closed before time delay t is complete, then time is reset. When trigger switch S is opened, the delay begins again, and relay contacts R remain in their energized state. If input voltage U is removed relay contacts R return to their shelf state.

Single Shot
Upon application of input voltage U, the relay is ready to accept trigger signal S. Upon application of the trigger signals, the erelay contacts R transfer and the preset time thegins. During time-out, the trigger signal Sis ignored. The relay resets by applying the trigger switch s when the relay is not energized.

Single Shot Trailing Edge (Non-Retriggerable)
Upon application of input voltage U, the relay is ready to accept trigger signal S. Upon application of the trigger signal S, the re relay contatats Rtransfer and the preset timet begins. At the end of the preset timet, the relay contacts Rretum to their normal condition unless the trigger switch s is opened and dosed prior to
time outt (before preset time elapses. Continuous cycing of the trigers swith time outt tbeforere preset time elapsess. Continuous yycing of the trigger swith dosed. If input voltage U is removed, relay contacts R return to their shelf state

On/Off Delay

Input voltage U must be applied continuously. When trigger switch S is closed, time delay t begins. When time delay tis complete, relay contacts R change state and remain transferred until trigger switch S is opened. If input voltage U is removed, relay contacts R return to their shelf state.

Latching relay

Input voltage U must be applied continuously. Output changes state with every trigger switch S closure. If input voltage U is removed, relay contacts R return to their shelf state.

Pulse generator

Upon application of input voltage U, a single output pulse of 0.5 seconds is delivered to relay after time delay t. Power must be removed and reapplied to repeat pulse. Trigger switch is not used in this function.

$f \quad S$ | \square | \square |
| :---: | :---: |
| $-t$ | t |

h

i S

j

Time ranges

0.1-1 min

1-10 min

$1-10$ days

only ON

Description

Notes

1) CRM-93H doesn't allow switching of different phases or 3-phase voltages .
2) When mounting into steal-plated switchboards, it is necessary keep safety distance of min. 3 mm from terminal's screws 35-36-38 and 25-26-28 towards the shutter of a switchboard.

Multifunction time relay CRM-61

- Multifunction time relay (6 functions and 6 time ranges), cost effective version of CRM-91H
- To be used for electrical appliances, control of lights, heating, motors, pumps, fans, etc
- 6 functions: - 3 time functions controlled by supply voltage
-3 time functions controlled by control input
- Easy to use function and time-range setting by rotary switches
- Time scale $0.1 \mathrm{~s}-10$ hrs divided into 6 range:
($0.1 \mathrm{~s}-1 \mathrm{~s} / 1 \mathrm{~s}-10 \mathrm{~s} / 0.1 \mathrm{~min}-1 \mathrm{~min} / 1 \mathrm{~min}-10 \mathrm{~min} / 0.1 \mathrm{hrs}-1 \mathrm{hrs} / 1 \mathrm{hrs}-10 \mathrm{hrs}$)
- Universal Voltage range: AC 24-240 V, DC 24 V
- Output contact: 1x changeover/ SPDT 8 A
- Multifunction red LED output indicator flashes or shines depending of status
- 1-MODULE, DIN rail mounting

EAN code

CRM-61/UNI: 8595188120210

Digital time switch clock SHT

Programmable digital relay PDR-2/A, PDR-2/B

- multifunction programmable digital relay with 4 digit red LED display

- control and setting is done by 3 buttons, user-friendly menu, absolute accuracy in timer setting, time countdown on a display galvanically separated START and STOP control inputs with UNI supply
- thanks to its complexity it is possible to program also more demanding time functions by using 2 independent times
- 2 independent times, with combination of 2 inputs and 2 outputs
- PDR-2/A: 16 functions, choice of functions of the other relay, 30 memory places for most frequently used times
- PDR-2/B: 10 functions, 1 output of 10 functions can be assigned to each relay $=2$ relays in one device
- 2 independent times in range: $0.01 \mathrm{~s}-100 \mathrm{hrs}$
- supply voltage $A C / D C 12-240 \mathrm{~V}$ or AC 230 V
- 3-MODULE, DIN rail mounting

EAN code

PDR-2A/230V: 8594030333037 PDR-2A/UNI: 8594030333044 PDR-2B/230V: 8594030333051 PDR-2B /UNI: 8594030333068

Technical parameters	PDR-2/A	PDR-2/B
Function:	16	10
Supply terminals:	A1-A2	
Voltage range: \quad E	AC/DC $12-240 \mathrm{~V}(\mathrm{AC} 50-60 \mathrm{~Hz})$	
Burden:	AC0.5-2.5 VA / DC $0.4-2.5 \mathrm{~W}$	
Voltage range: 앙	AC $230 \mathrm{~V} / 50-60 \mathrm{~Hz}$	
Consumption (apparent/loss):	AC max. $16 \mathrm{VA} / 2.5 \mathrm{~W}$	
Supply voltage tolerance:	-15\%; +10\%	
Time ranges:	$0.01 \mathrm{~s}-100 \mathrm{~h}$	
Repeat accuracy:	0.2% - set value stability	

Temperature coefficient:

Output
 Number of contacts:

Current rating:
Breaking capacity:
Inrush current:
Switching voltage:
Min. breaking capacity DC:
Output indication:
Mechanical life:
Electrical strength (AC1):

Control

Control input Burden:
Glow lamps:
Control. impulse length:

Reset time:
Display - colour:
Number and height of digits:

Luminace

Light wavelength:
Brightness setting:
Memory - memory locations:
Data stored for:
Other information
Operating temperature:
Storage temperature:
Electrical strength:
Operating position:
Mounting/DIN rail:
Protection degree:
Overvoltage cathegory:
Pollution degree:
Max. cable size (mm^{2}):
Dimensions:
Weight:
Standards:

Programmable digital relay PDR-2/A, PDR-2/B

Recommendation:
PDR-2/B is replaced by 2 simple time relays $=2$ in one.

Plug-in time relay PRM-91H, PRM-92H, PRM-2H

- Multifunction time relays in 11 or 8 pin standardized plug-in type socket enables easy exchange or replacement.
- Multifunction time relay PRM-91H

11 and 8 pin type
10 time functions, time scale $0.1 \mathrm{~s}-10$ days divided into 10 ranges output contact SPDT 1x 16 A/ 4000VA, 250V AC1

- Multifunction time relay PRM-92H

11 pin type
10 time functions, time scale $0.1 \mathrm{~s}-10$ days divided into 10 ranges output contact DPDT 2×8 A / 2000VA, 250 V AC1

- Asymmetric cycler PRM-2H

11 pin type
2 time functions, time scale 0.1 s - 100 days divided into 10 ranges output contact DPDT 2×8 A / 2000VA, 250 V AC1

- Universal supply voltage AC/DC 12-240V
- Output indication: multif. red LED, flashing at certain states
- PLUG-IN relays

Plug-in time relay PRM-91H, PRM-92H, PRM-2H

Function PRM-91H, PRM-92H

Delay OFF responding to make
of control contact regardless its length

Delay 0FF
after break of control contact with instant output

Delay OFF after make and break of control contact

Memory (latching) relay

Pulse generator (PULSE=0.55)

h	\mathbf{S}			
	\mathbf{R}	\mathbf{t}	\mathbf{t}	$\mathbf{t} \boldsymbol{t}$

Function PRM-2H
Choice Function in PRM-2H is done by connecting terminals 2 and 5
Cycler beginning with pulse

Cycler beginning with pause

Description / Connection

S4:30 PRM-91H	

Time ranges PRM-91H , PRM-92H

Time ranges PRM-2H

Super-multifunction relay SMR-T, SMR-H, SMR-B

EAN code SMR-T/230V SMR-H/230V SMR-B/230V
 8595188129114 8595188135566

- Multifunction relay designed for installation into a wiring box or under wall-switch in an existing electrical installation
- Advantageous and fast solution for exchanging standard wall-switch for a switch controlled by time or for an impulse relay controlled by a button
- More information about type and size of load for these products can be found on page 154
- SMR-T
- 3-wire connection, functional without neutral
- output: 10-160 VA
- it is not possible to be used for fluorescent lights and energy saving lights (loads of capacitive type)
- SMR-H
-4-wire connection
- output: 0-200 VA
- it is not possible to be used for fluorescent lights and energy saving lights (loads of capacitive type)
- SMR-B
-4-wire connection
- 10 functions
- output contact 1x16A / 4000 VA, 250 V AC1
- enables switching of fluorescent lights and also energy saving lights (see chart on page 154)
- independent galvanically separated input $A C / D C 5-250 \mathrm{~V}$, for example for control from a security system

Technical parameters	SMR-T	SMR-H	SMR-B	Description
Number of functions:	9	9	10	SMR-H
Connection:	3 -wire, without neutral		4 -wire, with neutral	

Voltage range:
Power input (no operation/make):
Supply voltage tolerance:

Time ranges:
Time setting:
Time deviation:
Repeat accuracy:
Temperature coefficient:
Output
Number of contacts:

Numb	1 x triac			1xNO (AgSnO_{2})
Resistive load:	10-160VA		0-200VA	16A 125/250 V AC1
Inductive load:	10-100VA		0-100VA	$8 \mathrm{~A} 250 \mathrm{VAC}(\cos \varphi>0.4)$
Control:				
Control voltage:		AC230 V		AC 230V, UNI-5-250 V AC/DC

Control voltage:
Control current:
Impulse length: Other information
Operating temperatu
Operating position:
Mounting:
Mounting:
Protection degree:
Overvoltage cathegor
Pollution degree:

Fuse:

Connection:
Glow-lamps in control button:
Dimensions:
Weight:
Standarts:

* for more information see chart on pg. 154

Time ranges

Super-multifunction relay SMR-T, SMR-H, SMR-B

Function

Function a - delay off on entrering edge
output times when it is switched. Each following pressing (max. 5 x)
increases time Long pressing swithes output off

Function b - delay off on downward edge output times after button is swithed off, switches immediately

Function c- delay off on downward edge after switching off output switches on and times.

Function d - cycler - flasher impulsem
output cycles in regular interval, cycler starts with an impulse

Function e - puls shift
delay on after the switch is switched on and delay on after it is switched off
 V $t / 2 x t$

Functionf-delay on
delay on ater switch is switched on until it is switched off
Function g - pulse relay
switches on by a press, another pressing switches the output off. The length of pressing doesn't matter, it is possible to set reaction delay by a potentiometer and thus eliminate rebound of a button

Function h - impulse relay with delay
one press switches on, another one switches the output off incase it is
done before the end of timing
Function i- delay on after switched off
output cycles in regular intervals, cycler starts with a gap

Function ${ }^{*}$ - cycler starting with gap
delay on after switching on until it is de-energized or a switch is pressed again.
Note.: *- Function jis valid only for SMR-B

S	
V	$1 \square$

S		
V	t	t

S	
V	$t\|t\| t \mid t$

Connection SMR-B, SMR-H, SMR-T

Example of connection SMR-T

After the light bulb switch is switched off, fan starts operating and after set time switches off.

Staircase switch CRM-4

■ Intelligent staircase switch, the same use as CRM-4, but with enlarged possibility of control in mode„,PROG" it is possible to select time of delayed OFF by number of button pressing. Each pressing multiplies time set by potentiometer, it means that in case you set time to 5 min and press the button 3 times, then the output is automatically prolonged to 15 min. Output can be also switched off before time (reset) by long pressing of button (longer than 2 sec)

- Output relay contact 16A/AC1 with inrush current up to 80 A enables switching of el. bulbs and also fluorescent lights.
- Operating system switch:

ON - Output is constantly ON (service model)

AUTO - timing according to adjusting by potentiometer in range $30 \mathrm{~s}-10 \mathrm{~min}$
PROG - timing with time prolongation option by number button pressing

- Timing (in mode AUTO and PROG) is possible to be stopped by long pressing of the button ($>2 \mathrm{~s}$)
- Voltage range: AC 230 V , clamp terminals
- Output indication: multif. red LED, flashing at certain states
- Possibility to connect up to 100 buttons equipped with glow lamps (altogether 100 mA)
- 3-wire or 4-wire connection (it is possible to control input Sby potential A1 or A2)
- Warning before switch OFF- output doubleflash 40 and 30 sec before switch OFF
- 1-MODULE, DIN rail mounting
Technical parameters CRM-42

Function:

Supply terminals:
Voltage range:
Burden:
Supply voltage tolerance:
Supply indication:
Time ranges:
Time setting:
Time deviation:
Repeat accuracy:
Temperature coefficient:
Output
Number of contacts:
Current rating:
Breaking capacity:
Inrush current:
Switching voltage:
Min. breaking capacity DC:
Output indication:
Mechanical life:
Electrical life (AC1):
Electrical life (AC5b):
Control
Control voltage:
Input Burden:
Glow-tubes:
Control. terminals:
Impulse length:
Reset time:
Other information
Operating temperature:
Storage temperature:
Operating position:
Mounting/DIN rail:
Protection degree:
Overvoltage cathegory:
Pollution degree:
Max. cable size $\left(\mathrm{mm}^{2}\right)$:

Dimensions:
Weight:
Standards:

Symbol

* For bigger bulb loads and frequent switching is recommanded to intensify the contact relay with power contactor. VSXXX

Connection

3 - wire connection

4- wire connection

Description

Function

MODE AUTO

MODE PROG (the illumination time is defined by number of button pressing)

MODULE

- Separation or reinforcement of control circuit outputs.
- Protection of contacts of energy tariff switching, switching of boilers, el.bulbs.
- State indication by color LED.

PLUG-IN TYPE

- Industrial relay with long-life and quick replacement.
- Mechanical arrest and contol LED.

Auxiliary and Power relays

Power and auxiliary relays

Chart of power and auxiliary relays

$\stackrel{\otimes}{\beth}$	$\stackrel{\overline{\bar{n}}}{\substack{0}}$			Other features				
					㫐			
VS116K	1M-DIN	AC230 and AC/DC 24 V	1x16 A changeover/ SPDT	\bullet	\bullet	\bullet	as a separation relay (4kV), direct switching of appliances up to 4000VA (e.g. heaters), well visible signalization, noiseless	67-68
VS116U	1M-DIN	AC/DC 12..240 V	1x16 A changeover/ SPDT	\bullet	\bullet	\bullet	as VS116K, but multivoltage supply coil	67-68
VS308K	1M-DIN	AC230 and AC/DC 24 V	3x8 A changeover/ 3PDT	\bullet	\bullet	\bullet	a"multiplication" of contacts, 3x changeover contact/3PDT only in 1-MODULE, well visible signalization, noiseless	67-68
VS308U	1M-DIN	AC/DC 12..240 V	3x8 A changeover/ 3PDT	\bullet	\bullet	\bullet	as VS308K, but multivoltage supply coil	67-68
VS316/24	1M-DIN	AC/DC 24 V	3x16 A changeover/ 3PDT	\bullet	\bullet	\bullet	3x changeover contact in 1-MODULE, possibility of "multiplication" of contacts and in the same time possibility of switching high output, possibility of3 phase switching	67-68
VS316/230	1M-DIN	AC230V	3x16 A changeover/ 3PDT	\bullet	\bullet	\bullet	as VS316/24, but AC 230 V	67-68
782	PLUG-IN	$\begin{aligned} & \text { AC 6-230V, } \\ & \text { DC 6-110V } \end{aligned}$	4x8 A changeover/ 4PDT	\bullet			compact small relay in to 14 -pin socket, basic version equipped by LED indication, detent and testing lever, gold-plated contact	69-70
750	PLUG-IN	$\begin{aligned} & \text { AC 6-230V, } \\ & \text { DC } 6-110 \mathrm{~V} \end{aligned}$	3x16A Ahangeover/ 3PDT	\bullet			as 782 , but wiht 11 -pin round socket, $3 x$ changeover contact / 3PDT 16A/250V	69-70

More about contact loadability on page 153-154

- To strengthen current switching or multiply contacts
- Output contact: VS116K, VS116U: 1x changeover 16 A
VS308K, VS308U: 3x changeover 8 A
VS316/24, VS316/230: 3x changeover 16 A - possibility of connection into 3-phase circuit
- Output status is indicated by highly luminous LED
- Choice of LED color for output status indication: red, green, yellow, blue or white LED*
- Inbuilt diode for suppressing unwanted peaks while relay opening and RC element against disturbances
- 1-MODULE, DIN rail mounting

EAN code
 see page 68

Technical parameters	VS116K	VS116U	VS308K	VS308U	VS316/24	VS316/230
Supply terminals:	A1-A2					
Voltage range:	AC $230 \mathrm{~V} / 50-60 \mathrm{~Hz}$	AC/DC $12-240 \mathrm{~V} / 50-60 \mathrm{~Hz}$	AC $230 \mathrm{~V} / 50-60 \mathrm{~Hz}$	AC/DC $12-240 \mathrm{~V} / 50-60 \mathrm{~Hz}$	AC/DC $24 \mathrm{~V} / 50-60 \mathrm{~Hz}$	AC $230 \mathrm{~V} / 50-60 \mathrm{~Hz}$
Burden:	AC max. $7.5 \mathrm{VA} / 1 \mathrm{~W}$	AC 0.7-3 VA/ DC $0.5-1.7 \mathrm{~W}$	AC max. 10.3 VA/ 1.1 W	AC0.7-3 VA/ DC $0.5-1.7 \mathrm{~W}$	$1.6 \mathrm{VA} / 1.2 \mathrm{~W}$	2.5 VA
Supply terminals:	A1-A3	x	A1-A3		X	
Voltage range:	AC/DC $24 \mathrm{~V}(50-60 \mathrm{~Hz}$)	x	AC/DC 24 V ($50-60 \mathrm{~Hz}$)		X	
Burden:	AC 1 VA/ DC 1W	x	AC 1 VA/ DC 1W		x	
Supply voltage tolerance:	-15\%; +10\%					
Output						
Number of contacts:	1 x changeover/ $\operatorname{SPDT}\left(\mathrm{AgSnO}_{2}\right)$		3 x changeover/3PDT (AgNI / Silver Alloy)		$3 \times$ changeover/3PDT $\left(\mathrm{AgSnO}_{2}\right)$	
Current rating:	$16 \mathrm{~A} / \mathrm{AC1}$		8 A/AC1		16A/ AC1	
Breaking capacity:	4000VA/ AC1,384W/ DC		2000VA/ AC1, 192W/ DC		4000VA/ AC1, 384W/ DC	
Inrush current:	$30 \mathrm{~A} /<3 \mathrm{~s}$		$10 \mathrm{~A} /<3 \mathrm{~s}$		$30 \mathrm{~A} /<3 \mathrm{~s}$	
Switching voltage:	$250 \mathrm{VAC} / 24 \mathrm{VDC}$					
Min. breaking capacity DC:	500 mW					
Output indication:	high intensity of LED					
Mechanical life:	3×10^{7}					1×10^{7}
Electrical life (AC1):	0.7×10^{5}					1×10^{5}
Time between switching:	min. 2 s				20 ms	50 ms
Other information						
Operating temperature:	$-20^{\circ} \mathrm{C}$ to $+55^{\circ}\left(-4{ }^{\circ} \mathrm{F}\right.$ to $\left.131{ }^{\circ} \mathrm{F}\right)$					
Storage temperature:	$-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$					
Electrical strength:	4 kV (supply-output)					
Operating position:	any					
Mounting/DIN rail:	DIN rail EN 60715					
Protection degree:	IP 40 from front panel					
Overvoltage cathegory:	III.					
Pollution degree:	2					
Max. cable size (mm^{2}):	max. 1×2.5 or 2×1.5					
	max. 1×2.5					
Dimensions:	$90 \times 17.6 \times 64 \mathrm{~mm}\left(3.5^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5{ }^{\prime \prime}\right)$					
Weight:	54 g (1.9 oz.)	58 g (2.05 oz.)	52 g (1.83 oz.)	83 g (2.9 oz.)	90 g (3.17 oz.)	92 g (3.25 oz.)
Standards:			EN 61810-1	EN 61010-1		

Symbol

VS116K
VS116U
VS308K
VS308U
VS316/24, VS316/230

Notes:

Max. time of changeover of contact is 10 ms .
VS316/24 or VS316/230 enables switching of different phases or 3 phase voltge.

* - blue and yellow - possibility to choose blue and yellow color of LED for power relays line VS in case of minimal order uantity 100 pcs.

Power relays modular type VS

Description

VS316/24, VS316/230

EAN kód

VS116U /červená	8595188124607
VS116U /zelená	8595188136433
VS116U /žlutá (*	8595188138499
VS116U /bílá (*	8595188138482
VS116U /modrá (*	8595188138475
VS116K /črvená	8595188122597
VS116K /zelená	8595188122610
VS116K /žlutá (*	85951881225850
VS16KK /bílá (*	8595188122573
VS116K /modrá (*	8595188122603

VS308U /červená	8595188130103
VS308U /zelená	8595188136440
VS308U /žlutá (*	8595188138529
VS308U /bílá (*	8595188138512
VS308U /modráa	8595188138505
VS308K /črvená	8595188122696
VS308K /zelená	85951881222719
VS308K /Žulutá (*	8595188122689
VS308K /bilá	8595188122672
VS308K /modrá (*	8595188122702

VS316/230 červená	8595188135559
VS316/230 zelená	8595188136075
VS316/230 žlutá (*	8595188136082
VS316/230 bílá	8595188136051
VS316/230 modrá (*	8595188136068
VS316/24 červená	8595188135771
VS316/24 zelená	8595188136105
VS316/24 žlutá (*	8595188136129
VS316/24 bílá (*	8595188136099
VS316/24 modrá (*	8595188136112

- to switch higher output (load) than is the capacity of the switched element (amplifier) or multiply contacts
- auxiliary control of light, signalization, free-lever signal box, boiler,signalling receiver on electrometers, heaters
- includes: mechanical indication, LED indication, cadmium-free gold plated contact, and detent lever
- quality prooved and certified in EZU, VDE, UL and other testing laboratories
- 750-3x changeover contact /3PDT16 A
- 782-4x changeover contact/4PDT 8 A
- recomended sockets - page 70

Technical parameters	750	782
Contacts		
Number of Number of contacts:	3	4
Material of contacts:	$\mathrm{AgSnO}_{2}+0.25 \mu \mathrm{~m} \mathrm{Au}$	$\mathrm{AgSnO}_{2}+0.25 \mu \mathrm{~m} \mathrm{Au}$
Rated voltage:	AC $277 \mathrm{~V}(50-60 \mathrm{~Hz}$) / DC 28 V	AC $277 \mathrm{~V}(50-60 \mathrm{~Hz}$) / DC 28 V
Current rating:	16 A	8 A
Inrush current:	24 A	22.5 A
Switching output (AC1):	4430 VA	2216 VA
Switching output (AC15):	1500 VA	1500 VA
Minimal switching voltage/current	100 mA	/ DC5 V
Coil		
Rated voltage (DC):	6, 12, 24, 48, 110 V	6, 12, 24, 48, 110 V
Rated voltage (AC, $50-60 \mathrm{~Hz}$):	6, 12, 24, 120, 230 V	6, 12, 24, 120, 230 V
Rated input (AC/DC):	2-3.55 VA / 1.4 W	$1.2 \mathrm{VA} / 0.9 \mathrm{~W}$
Tolerance of Voltage range:	$-20 /+10 \%$	-20/+10\%
Insulation data		
Insulation category:	$\mathrm{B}\left(130^{\circ} \mathrm{C} / 266^{\circ} \mathrm{F}\right)$	B $\left(130^{\circ} \mathrm{C} / 266^{\circ} \mathrm{F}\right)$
Rated insulating voltage (AC):	2500 V	1500 V
Dielectric strength (AC)		
Coil- contact:	2500 V	1500 V
Contact-contact:	1500 V	1000 V
Insulating resistance at $500 \mathrm{~V} \mathrm{DC:}$	$10^{7} \Omega$	$10^{7} \Omega$
Distance contact-coil		
For rated load:	4.32 mm (0.17')	$4.57 \mathrm{~mm}\left(0.18^{\prime}\right)$
Without load:	5.84 mm (0.23')	4.57 mm (0.18)
General Data		
Mechanical life:	5×10^{6}	1×10^{7}
Electrical life (AC1):	2×10^{5}	2×10^{5}
Max. switching frequency		
for rated load:	360 cycles / hrs	360 cycles / hrs
without load:	1800 cycles / hrs	1800 cycles / hrs
Time of relay operation/return of contacts:	max. 25 ms	max. 25 ms
Operating temperature:	-40 to $+65^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.149{ }^{\circ} \mathrm{F}\right)(\mathrm{AC})$	-40 to $+65^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.149^{\circ} \mathrm{F}\right)$
Storing temparature:	-40 to $+85^{\circ}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.185^{\circ} \mathrm{F}\right)$	-40 to $+85^{\circ}$ (($-40^{\circ} \mathrm{F}$ to $185^{\circ} \mathrm{F}$)
Protection:	IP 40	IP 40
Shakeout resistance:	$20 \mathrm{~g}(0.71$ oz.)	$20 \mathrm{~g}(0.71$ oz.)
Vibration resistance ($10-55 \mathrm{~Hz}$):	5 g (0.18 oz.)	$5 \mathrm{~g}(0.18 \mathrm{oz}$.
Dimensions:	$35.4 \times 34.9 \times 57.9 \mathrm{~mm}$ ($\left.1.39^{\prime \prime} \times 1.37^{\prime \prime} \times 2.28^{\prime}\right)$	$27.9 \times 21.8 \times 40.9 \mathrm{~mm}\left(1.11^{\prime \prime} \times 0.86^{\prime \prime} \times 1.61^{\prime}\right)$
Weight:	$88 \mathrm{~g}(3.1 \mathrm{oz}$.	30 g (1.06 oz.)
Applicable standards:	EN 60947-4-1, EN 60947-5-1	EN 61810-1, EN 60255-1-00, EN 61810-7

Coil data - for 750

Type of product	voltage [V]	resistance $[\Omega]$
AC voltage		
750XCXM4L-6A	AC6	4.2
750XCXM4L-12A	AC 12	18
750XCXM4L-24A	AC24	72
750XCXM4L-120A	AC 120	1700
750XCXM4L-230	AC230	7200
DC voltage		
750XCXM4L-6D	DC6	32
750XCXM4L-12D	DC12	120
750XCXM4L-24D	DC24	470
750XCXM4L-48D	DC48	1800
750XCXM4L-110D	DC110	10000

Coil data - for 782

Type of product	voltage [V]	resistance $[\Omega]$
AC voltage		
782XCXM4L-6A	AC6	9.6
782XCXM4L-12A	AC12	46
782XCXM4L-24A	AC24	180
782XCXM4L-120A	AC120	4430
782XCXM4L-230A	AC230	15000
DC voltage		
782XCXM4L-6D	DC6	40
782XCXM4L-12D	DC 12	160
782XCXM4L-24D	DC24	650
782XCXM4L-48D	DC48	2600
782XCXM4L-110D	DC110	11000

EAN code

$782 / 6 \mathrm{~V}$ DC	8595188129909	$750 / 6 \mathrm{~V}$ DC	8595188129961
782/12V DC	8595188119030	$750 / 12 \mathrm{~V}$ DC	8595188129978
$782 / 24 \mathrm{~V}$ DC	8595188119047	$750 / 24 \mathrm{~V}$ DC	8595188125147
$782 / 48 \mathrm{~V}$ DC	8595188129916	$750 / 48 \mathrm{~V}$ DC	8595188129985
$782 / 110 \mathrm{~V}$ DC	8595188129923	$750 / 110 \mathrm{~V}$ DC	8595188129992
$782 / 6 \mathrm{~V}$ AC	8595188129930	$750 / 6 \mathrm{~V}$ AC	8595188130004
$782 / 12 \mathrm{~V}$ AC	8595188119085	$750 / 12 \mathrm{VaC}$	8595188130011
$782 / 24 \mathrm{~V}$ AC	8595188119092	$750 / 24 \mathrm{~V}$ AC	8595188119207
$782 / 48 \mathrm{~V}$ AC	8595188129954	$750 / 120 \mathrm{~V} \mathrm{AC}$	8595188130028
$782 / 120 \mathrm{~V}$ AC	8595188129947	$750 / 230 \mathrm{~V}$ AC	8595188119221

Connection

Connection-750

Connection-782

Socket ES-15/4N - for 782
Max. voltage: 12 A
Weight: 59 g
DIN rail mounting Designated for 4-contact relay

Accessories ES-15/4N - for 782
annotation label $-T$
clip to relay 785-16-785SC
It is possible to add LED MODULE, protective diode and RC element into a socket.

EAN code

ES15/4N	8595188119245
ES11	8595188129879
ES8	8595188136167
Spona k relé 750	8595188119283
Spona k relé 782	8595188119276

Dimmers

Recommendation for mounting:

Recommendation for mounting modular dimmers: leave a gap of min. 0,5 module (approx. $9 \mathrm{~mm} / 0.4^{\prime \prime}$) on side of the device to ensure better cooling of the device.

Dimmers

$\stackrel{ }{ }$	$\frac{\bar{G}}{\bar{y}}$		Type of dimmed load			Output					
			旁					Rated load			
			${ }_{R}^{2}$	$\underset{L}{L}$		\%	R	L	C		
DIM-2	1M-DIN	AC 230 V	\bullet	\bullet		triac	10-500VA	10-250VA	-	staircase switch with gradual dim-up/dim-down, level and length of illumination, all values are adjustable	73
DIM-5	1M-DIN	AC 230 V	\bullet	\bullet		triac	10-500VA	10-250VA	-	control by button/buttons (connected in parallel), short pressing ON/OFF, long pressing regulated brightness, memory recoding	74
DIM-14	1M-DIN	AC 230 V	\bullet	\bullet	\bullet	$\begin{gathered} 2 x \\ \text { mosfet } \end{gathered}$	500 VA*	500 VA*	$500 \mathrm{VA*}$	as DIM-5, but dims all types of load, inbuilt protections against thermo and current overload, electronic fuse	75
DIM-15	1M-DIN	AC 230 V	-	-	-	$\begin{gathered} 2 x \\ \text { mosfet } \end{gathered}$	**	-	-**	designated for dimming of: 1) LED bulbs and LED lighting sources 2) dimmable saving fluorescent lamps	78
DIM-6	6M-DIN	AC 230 V	\bullet	\bullet	\bullet	$\begin{gathered} 4 x \\ \text { mosfet } \end{gathered}$	2000 VA *	2000 VA*	2000VA*	for controlled dimming of lights up to 2 KW , with a possibility of module extention upto 20 kW (el.bulbs and hallogen lights, also with ballast type (orL)	76
DIM-6-3MP	3M-DIN	AC 230 V	\bullet	\bullet	\bullet	$\begin{gathered} 2 x \\ \text { mosfet } \end{gathered}$	1000 VA *	1000 VA*	1000 VA *	is expanding power modul for controlled dimmer DIM-6	77
SMR-S	BOX	AC 230 V	\bullet	\bullet		triak	10-300VA	10-150VA	-	as DIM-5, but for mounting under a wall-switch, into a wiring box, 3 wire connection (without neutral) is expanding power modul for	80
SMR-U	BOX	AC 230 V	\bullet	\bullet	\bullet	$\begin{gathered} 2 x \\ \text { mosfet } \end{gathered}$	500VA*	500VA*	500VA*	as DIM-14, but for mounting under a wall-switch, into a wiring box	80

Note: * - with load over 300 VA is necessary to ensure sufficient cooling
Note: ** - more info on the page 78-79

Staircase switch with dimming DIM-2

- Designated for dimming el. bulbs, halogen lights and winding transformers for halogen lights
- Intelligent control of halogen lights, function of gradual switching on and dimming
- Controlling inputs for push button and switch
- Values are set by potentiometers on front panel of the product, adjustable:
- maximum dim-up
- speed (fluency) of dim-up
- speed (fluency) of dim-down
- time for which a light is on with maximum dim-up
- All time intervals can be adapted according to a request
- Output without contact: 1x triac
- Load AC 5b (el. bulbs) 500 W
- Clamp terminals
- Parallel connection of controlling pushbuttons is possible
- Protection against over-temperature inside the product - switches output off + signalizes overheating by LED flashing
- Pote: possibility of start and finish adjustment up on 1 hour, device has description DIM-2 1h
- 1-MODULE, DIN rail mounting

DIM-2-1h /230V: 8595188135740

Technical parameters:	DIM-2
Supply terminals:	A1-A2
Voltage range:	AC $230 \mathrm{~V} / 50 \mathrm{~Hz}$
Burden:	max. 5 VA
Supply voltage tolerance:	-15\%; +10\%
Supply indication:	green LED
Time setting by:	potentiometers
Time deviation:	10% - mechanical setting
Repeat accuracy:	5% - set value stability
Temperature coefficient:	$0.01 \% /{ }^{\circ} \mathrm{C}$, at $=20^{\circ} \mathrm{C}$
Recovery time:	max. 80 ms
Controlling T1	
Terminals:	T1-A1
Voltage:	AC230 V
Power on control input:	max. 1.5 VA
Impulse length:	min. $100 \mathrm{~ms} / \mathrm{max}$. unlimited
Glow-lamps:	Yes, 5 pcs (1ks -1mA)
Controlling T2	
Terminals:	T2-A1
Voltage:	AC230 V
Power on control input:	0.1 VA
Impulse length:	min. $100 \mathrm{~ms} / \mathrm{max}$. unlimited
Glow-lamps:	No
Output	
Current rating:	2 A
Resistance load:	10-500 VA
Inductive load:	10-250 VA
Other information	
Operating temperature:	$-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-4{ }^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$
Storage temperature:	$-30^{\circ} \mathrm{Cto}+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
Operating position:	any
Mounting/DIN rail:	DIN rail EN 60715
Protection degree:	IP 40 from front panel / IP 10 terminals
Overvoltage cathegory:	III.
Pollution degree:	2
Max. cable size (mm^{2}):	solid wire max. 2×2.5 or 1x4/ with sleeve max. 1×2.5 or 2×1.5 (AWG 12)
Dimensions:	$90 \times 17.6 \times 64 \mathrm{~mm}$ (3.5 " $\times 0.7^{\prime \prime} \times 2.5$)
Weight:	$65 \mathrm{~g}(2.3 \mathrm{oz}$.
Standards:	EN 60669-2-1, EN 61010-1

Symbol

Connection

R,L

Description

Recommendation for mounting: leave a gap of min. 0,5 module (approx. 9 mm) on side of the device to ensure better cooling of the device.

Function

Legend:

Brightness: 10-100\%
t1 Dim-up time: 1-40 s
t2 Time delay: 0s-20min
t3 Dim-down time: 1-40s

Controlled via input T 1 (button)

Dim-up delay -down is started by a button. Cycle extensionanother button pressing (during cycle).

Controlled via input T2 (switch)

The switch starts the cycle and it stops on max. set brightness. After the switch is off, the cycle will continue until completed.

Controlled dimmer DIM-5

EAN code

DIM-5 /230V: 8595188115612

Technical parameters	DIM-5
Supply terminals:	A1-A2
Voltage range:	AC $230 \mathrm{~V} / 50 \mathrm{~Hz}$
Burden:	max. 5 VA
Supply voltage tolerance:	-15\%; +10\%
Supply indication:	green LED
Controlling	
Control terminals:	T-A1
Control voltage:	AC230 V
Power control input:	max. 1.5 VA
Impulse length:	min. $80 \mathrm{~ms} /$ max. unlimited
Glow-lamps:	Yes, 5 pcs (5 mA)
Output	
Current rating:	2 A
Resistance load:	10-500 VA
Inductive load:	10-250 VA
Output indication:	red LED
Other information	
Operating temperature:	$-20^{\circ} \mathrm{Cto}+55^{\circ}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.131{ }^{\circ} \mathrm{F}\right)$
Storage temperature:	$-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
Operating position	any
Mounting/DIN rail:	DIN rail EN 60715
Protection degree:	IP 40 from front panel / IP 10 terminals
Overvoltage cathegory:	III.
Pollution degree:	2
Max. cable size (mm^{2}):	solid wire max. 2×2.5 or 1×4 (AWG 12) with sleeve max. 1×2.5 or 2×1.5 (AWG 12)
Dimensions:	$90 \times 17.6 \times 64 \mathrm{~mm}$ ($\left.3.5^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5{ }^{\prime \prime}\right)$
Weight:	58 g (2 oz.)
Standards:	EN 60669-2-1, EN 61010-1

Function

- Designated for dimming el. bulbs, halogen lights and winding transformers for halogen lights
- For switching and dimming lights in corridors, staircases... control input for push-buttons (parallel connection possible)

■ Short press turns light on/off, long press ($>0.5 \mathrm{~s}$) provides dim up / dim down.

- When switched off, brightness level is stored in a memory and when On again it restores last brightness level
- Voltage range: AC 230 V
- Contactless output, triac 2A/500 VA
- LED output indication (with any level of brightness)
- Possibility to connect control buttons in parallel
- 1-MODULE, DIN rail mounting
- Clamp terminals
- Protection against over-temperature inside the product - switches output off + signalizes overheating by LED flashing

Symbol

Description

Recommendation for mounting: leave a gap of min. 0.5 module (approx. $9 \mathrm{~mm} / 0.4^{\prime \prime}$) on side of the device to ensure better cooling of the device.

Controlled dimmer DIM-14

- Designed for dimming of incandescent bulbs and halogen lights with wound or electronic transformer
- For switching and dimming of lights, control inputs for a button
- Short impulse switches ON/OFF, long impulse (>0.5s) enables gradual light intensity setting
- last intensity level is stored in memory when switched off
- Voltage range: AC 230 V
- Output without contacts: 2x MOSFET
- LED output indicator with any level of brightness possibility of parallel connection of control buttons
- Resistive, inductive or capacitive load, up to 300 W , for a short term up to 500 W
- 1-MODULE, DIN rail mounting
- Electronic overvoltage protection
- Protection against over-temperature inside the device - output off

DIM-14/230V: 8595188135955

[^0]
Controlled dimmer DIM-6

Technical parameters	DIM-6
Supply terminals:	L, N
Supply voltagei:	AC $230 \mathrm{~V} / 50 \mathrm{~Hz}$
Input:	10 VA
Tolerance of Voltage range:	$-15 \% ;+10 \%$
Max. output power:	max. 2000 VA
Dissipated power:	2.5% from load
Module extendable:	to 10000 VA
Galvanic separation of bus and power output:	yes
Isul. volt. between outputs and inner circuits:	3.75 kV, SELV according to EN 60950
Control - button type	
Control voltage:	AC 12-240V
Control terminals:	S-S, galvanically separated
Power of control input:	AC 0.53 VA (AC 230V), $\mathrm{AC} 0.025-0.2 \mathrm{VA}$ (AC 12-240V)
Length of control impulse:	min. 25ms / max. unlimited
Recovery time:	max. 150ms
Connection of glow lamps:	YES (AC 230V), 20ks (1ks-1mA); NO (AC 12-240V)

Control O(1)-10V:
Control terminals:
Control voltage:
Min. current of control input:
CIB control:

Control terminals:	CIB+, CIB-
Bus voltage:	$27 V$ DC
Current of control input:	5 mA
Indication of datata transmission:	yellow LED
Output	
Contactless:	$4 \times$ MOSFET
Current rating:	10 A
Resistiv load:	$2000 \mathrm{VA}^{*}$
Inductive load:	$2000 \mathrm{VA}^{*}$

Capacitive load:
Indication of output state:
Other data
Operating temperature:
Storing temperature:
Operating position:

Mounting:

Protection degree:
Purpose of control device:
Construction of control device:
Char. of automatic operation:
Heat and fire resistance cat.:
Anti-stroke category (immunity):
Rated impulse voltage:
Overvoltage category:
Pollution level:
Profile of connecting wires:

- output part:
- control part:

Dimensions:
Weight:
Applying standards:
0(1)-10V, GND
$0-10 \mathrm{~V}$ or $1-10 \mathrm{~V}$
1 mA

IB+, CIB-
DC
ellow LED
x MOSFET

2000 VA*

2000 VA *
yellow LED, according to load type
$-20^{\circ} \mathrm{Cto}+35^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.95^{\circ} \mathrm{F}\right)$
$-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
vertical
DIN rail EN 60715
IP 40 from front panel
operative control device
individual control device
1.B.E

FR-0
class 2
2.5 kV
III.

2
max. 1×2.5, max2x1.5/ with sleeve max. 1×1.5 (AWG 12) max. 1×2.5, max2x1.5/ with sleeve max. 1×2.5 (AWG 12) $90 \times 105 \times 65 \mathrm{~mm}\left(3.5^{\prime \prime} \times 4.1^{\prime \prime} \times 2.6^{\prime \prime}\right)$

410 g (14.5 oz .)
EN 60669-2-1, EN 61010, EN 55014

- Designed for RLC dimming lights, also available for appliance switching
- DIM-6 can be controlled by: button(parallel button connection), external potentiometer, analog signal 0-10 $\mathrm{V}(1-10 \mathrm{~V})$, INELS system bus.
- Actuator manages output 230 V AC , controlled by 1 semi-conductor. Maximum output power is 2000 VA
- power range can be increased up to 10000 VA , by module DIM6-3M-P
- Electronic overcurrent protection, overvoltage and short-circuit protection.
- Protection against over temperature inside device - switch off output+signalize overheat by fl ashing red LED.
- 6-MODUL version, mounting on DIN rail

Symbol

(x) - according to control type setting

Types of indication LED
$R L \otimes$ - Yellow-indicates configuration of load RL
$R C \otimes$ - Yellow-indicates configuration of load $R C$
\therefore - Green-button control mode selected
$0-10 \mathrm{~V}$ - Green - $0-10 \mathrm{~V}$ signal control mode selected
$1-10 \mathrm{~V} \quad$ - Green $-1-10 \mathrm{~V}$ signal control mode selected
ineLs - Green - CIB conductor bar-INELS control mode selected
$\mathrm{CIB} \quad$ - Yellow - indicates CIB conductor bar data transfer comunication
OVERLOAD - Red - indicates overload, flashing LED signalizes overrun inside the device, shinnig LED signalizes current overload

Device description

(1) Terminals for CIB bus connection
(2) Load type indication
(3) Control type indication
(4) CIB data transfer indication
(5) Overload indication
(6) Terminals for connecting control button
(7) Terminals of neutral wire
(8) Terminal for phase conductor connection
(9) Output terminals
(10) Button for output control
(11) Button for output control
(12) Terminal for additional modul conductor bar
(13) Terminals for control by signal 0 (1)-10V, or by potentiometer
(14) Terminal for regulation load of wire jumper

* Warning : it is not allowed to connect inductive and capacitive loads at the same time.

- Expansion power module only for use in conjunction with DIM-6
- DIM6-3M-P provides power increasement (of about 1000VA) of load connected to DIM-6. (it means: $2000 \mathrm{VA}($ DIM-6) $+1000 \mathrm{VA}($ DIM6-3M-P) $=3000 \mathrm{VA})$
- DIM-6 can be connected with up to 8 DIM6-3M-P to expand power up to 10000 VA
- Attention-device has to be protected by series breaker unit , compatable to size of connecting load.
- DIM-6 in installation is cooled by natural air flow. If the natural air flow access is reduced, cooling has to be provided by ventilator. Rated operating temperature is $35^{\circ} \mathrm{C} / 95^{\circ} \mathrm{F}$
- If there are several DIM6-3M-P connected to DIM-6, the distance between them has to be min. $2 \mathrm{~cm} / 0.8^{\prime \prime}$
- Max. lenght of bus EB is $1 \mathrm{~m} / 39.4^{\prime \prime}$ and the connection has to be realized by schielded cable.

Connection

*Potencial L on device terminal, has to be protected by circuit breaker accordant to the load connected to device.

Dimmer for LED bulbs and dimmable fluorescent lamps DIM-15

EAN code

DIM-15 /230V: 8595188140690

- Designated for dimming of: a) LED bulbs and LED light sources b) dimmable saving fluorescent lamps
- Enables gradual setting of luminance by push-button (non-detent) or parallel buttons
- Returns to last state upon re-energization
- Type of light source (LED or saving fluorescent lamp) is set by switch-over on the front panel of device
- Minimal luminance, set by potentiometer on the front panel, eliminates flashing of some types of saving
fluorescent lamps
- Supply voltage 230V AC
- Output status is indicated by red LED:

- shines when output is active

-flashes while heating overload, at the same time output is disconnected

- 1-MODULE version, DIN rail mounting, saddle terminals

Connection

Light source type setting
dimmable saving fluorescent lamps

LED bulbs

Device describtion
Supply voltage L Output

Functions

Controlling:

- short button press (<0.55) turns the light off or on
- long press (>0.55) enables slight regulation of light intensity
- setting of minimal luminance is possible only during decreasing of luminance by long button press

Minimal luminance setting:
„LED bulb"

- if the light is turned off, short press (<0.5s) switches the light onto last set luminance level
"Fluorescent lamp" \&
- when light is off, short impulse turns lamp on and then luminance is decreased to set level
- setting of minimal luminance by saving fluorescent lamps serves for harmonizing of lowest light intensity prior its unprompted switching off

Recommended light sources

The maximal universality became to be a habit by our products - by this dimmer it is its wide spectrum of applicable light souces. Area of LED lights dimming - as well as saving lamps dimming area - is relatively new and there are not so many manufacturers, who are producing these devices. Therefore we will be continuing with tests and extending the chart below with more types. We will appreciate your cooperation and informations about new types on the market.

Overview of tested light sources types and its loads				
Type	Manufacturer	socket	quantity [pcs]	max.load [W]
	BRILUM LED line white (21LED)	GU10D	22	29
	OSRAM DULUX EL.DIMMABLE LUMILUX Warm White 1230Im	E27	11	220
	MEGAMAN DIMMERABLE 2700K DECO1	E14	16	144
	LUMEE GU 10-60-CW-120	GU-10	8	24
	LUMEE GU 10-P-60-CW-120	GU-10	8	24
	LUMEE JDRE 14-60-CW-120	E14	8	24
	LUMEE Ball-80-CW	E14	20	80

Notice:

- it is possible to dim only LED bulbs equipped with capacitator supplying
- it is not possible to dim saving fluorescent lamps without marking: dimmable
- an incorrect setting of light source has effect only on dimming range, it means neither dimmer or load get demaged
- maximal load is counting with usage of LC filter
- actual list of tested light sources is constantly refreshing, further information on www.elkoep.cz/www.elkoep.com

Connection example

Dimmer flush mounting SMR-S, SMR-U

EAN code
SMR-S/230V: 8595188123518
SMR-U/230V: 8595188130738

Technical parameters

Connection:
Voltage range:
Power input (no operation/make)

Power input (no operation/make):
Supply voltage tolerance:

Output

Resistive load:
Inductive load:
Capacitive load:
Control
Control voltage:
Current:
Impulse lenght:
Other information
Operating temperature:
Operating position:
Mounting:
Protection degree:
Overvoltage cathegory:
Pollution degree:
Fuse:
Connection:
Glow lamps in a button:
Dimensions:
Weight:
Standards:

SMR-S	SMR-U
3 -wire con., without neutral	4-wire con., with neut
$230 \mathrm{VAC} / 50 \mathrm{~Hz}$	
max. 3 VA	
-15\%; +10\%	
10-300VA	500 VA*
10-150VA	500 VA*
x	500 VA*

AC230 V

max. 3 mA
min. $50 \mathrm{~ms} /$ max. unlimited
$0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.122^{\circ} \mathrm{F}\right)$
any
free at connecting wires
IP 30 in standard conditions
III.

F1.6A/250V
solid wires $0.75 \mathrm{~mm}^{2}$ (AWG 18), lenght: 90 mm ($3.5^{\prime \prime}$)

$$
\text { max. number } 10
$$

$49 \times 49 \times 13 \mathrm{~mm}\left(1.9^{\prime \prime} \times 1.9^{\prime \prime} \times 0.5^{\prime \prime}\right)$
$32 \mathrm{~g}(1.1$ oz. $) \quad 32 \mathrm{~g}(1.1 \mathrm{oz}$.
EN 61010-1, EN 60669-2-1

Function SMR-S, SMR-U

KA short press ($<0.5 \mathrm{~s}$) turns a light on, another short press turns it off. A longer press ($>0.5 \mathrm{~s}$) causes a gradual regulation of light intensity min-max-min round until the button is released. After releasing a set intensity is kept in memory, further short presses turn the light on/off keeping the set intensity. The intensity can be changed by further long press. After de-energising the relay remembers the set value.

- Button-controlled dimmers designated for flush mounting into a wiring box, into an existing elecal-installation (SMR-S doesn't need neutral for correct function)
- Can control lamp brightness, dimming , control from more places(parallel connections) possible
- Protection against temperature overrun inside the device - output off
- By changing wall-switch for a switch with SMR-S/SMR-U installed below you can reach effective brightness control
- SMR-S enables dimming of electric bulbs 12 V , halogen lights with wound transformers (inductive load)
- SMR-U enables also dimming 12 V halogen lights with electronic transformers (capacitive load)
- Should not be used without a fluorescent ballast or on CFL's
- SMR-S - 3-wire connection, functional without neutral
- max. load: 300 VA (el. bulbs or halogen lights with wound transformer)
- contactless output -1x triac
- with exchangeable fuse
- SMR-U - 4-wire connection
- max. load: 500 VA (el. bulbs or halogen lights with electronic or wound transformer)
- contactless output - 2 xMOSFET
- electronic overload and over-temperature protection - output off in case of short-circuit or overvoltage

Connection SMR-S, SMR-U

Warning: it cannot be used for fluorescent lights and energy saving lights!
SMR-U: It is not allowed to connect together loads of inductive and capacitive type in the same time.

Description of SMR-S

UNSTABILIZED

- Stable AC or DC output voltage.
- Supplying of simple devices, indicating lights and home door bells.

STABILIZED REGULATE

- Specific voltage setting, regulation by potentiometer.
- Indication of current limit exceeding.
- Protection against short-circuit on output.
- Supply of appliances with galvanical separation from the main

Power supplies

BELL TRANSFORMER

- Simple supplies with alternating output voltage.
- Supplying of door locks and door bells.

Power supplies

Nonstabilized AC

Power supplies

			Output						Protection against overload				
$\stackrel{\sim}{2}$	$\begin{aligned} & \text { 듬 } \\ & \hline 0 \end{aligned}$		Y	¢	$\begin{aligned} & \text { 뮤 } \\ & \stackrel{\rightharpoonup}{\bar{n}} \\ & \stackrel{7}{n} \end{aligned}$								(1)
ZNP-10-12	3M-DIN	$\begin{aligned} & \text { AC } 230 \mathrm{~V}, \\ & -15 /+10 \% \end{aligned}$	\bullet	\bullet		$\begin{aligned} & \mathrm{AC} 12 \mathrm{~V} \\ & \mathrm{DC} 12 \mathrm{~V} \end{aligned}$	0.8 A	-	\bullet			$D C$ and $A C$ nonstabilized, output voltage 12 V - where it is not required or where there is stabilized differenty/later	88
ZNP-10-24	3M-DIN	$\begin{gathered} \text { AC } 230 \mathrm{~V}, \\ -15 /+10 \% \end{gathered}$	\bullet	\bullet		$\begin{aligned} & \text { AC } 24 \mathrm{~V} \\ & \text { DC24V } \end{aligned}$	0.4A	-	\bullet			DC and $A C$ nonstabilized output voltage 24 V - where it is not required or is stabilized later	88
ZSR-30	3M-DIN	$\begin{aligned} & \mathrm{AC} 230 \mathrm{~V}, \\ & -15 /+10 \% \end{aligned}$	\bullet	\bullet	\bullet	$\begin{gathered} \text { DC5-24V } \\ \text { AC } 24 \mathrm{~V} \end{gathered}$	1.6A-0.3 A	S	\bullet	\bullet		regulated output voltage in a wide range DC5-24V: possibility to adjust output voltage with load according to request	88
PS-10-12	1M-DIN	$\begin{aligned} & \text { AC } 230 \mathrm{~V}, \\ & -20 /+10 \% \end{aligned}$		\bullet	\bullet	DC12V	0.84A	S	\bullet	\bullet	\bullet	stabilized swithing power supply with fixed output voltage $12 \mathrm{~V} / 10 \mathrm{~W}$, 1 module	86-87
PS-10-24	1M-DIN	$\begin{gathered} \mathrm{AC} 230 \mathrm{~V}, \\ -20 /+10 \% \end{gathered}$		\bullet	\bullet	DC24V	0.42A	S	\bullet	\bullet	\bullet	stabilized switching power supply with fixed output voltage 24V / 10W, 1 module	86-87
PS-30-12	3M-DIN	$\begin{gathered} \mathrm{AC} 230 \mathrm{~V}, \\ -20 /+10 \% \end{gathered}$		\bullet	\bullet	DC12V	2.5 A	S	\bullet	\bullet	\bullet	stabilized switching power supply with fixed output voltage $12 \mathrm{~V} / 30 \mathrm{~W}$, 3 module	86-87
PS-30-24	3M-DIN	$\begin{aligned} & \mathrm{AC} 230 \mathrm{~V}, \\ & -20 /+10 \% \end{aligned}$		\bullet	\bullet	DC24V	1.25 A	S	\bullet	\bullet	\bullet	stabilized swith hing power supply with fixed output voltage $24 \mathrm{~V} / 30 \mathrm{~W}$, 3 module	86-87
PS-30-R	3M-DIN	$\begin{aligned} & \text { AC } 230 \mathrm{~V}, \\ & -15 /+10 \% \end{aligned}$		\bullet	\bullet	DC12-24V	2.5A-1.25 A	S	\bullet	\bullet	\bullet	stabilized switching power supply with fixed output voltage 12-24V / 30W, 3 module	86-87
PS-100-12	6M-DIN	$\begin{gathered} \text { AC } 230 \mathrm{~V}, \\ -20 /+10 \% \end{gathered}$		\bullet	\bullet	DC12V	8.4A	S	\bullet	\bullet	\bullet	stabilized switching power supply with fxed outputvoltage $12 \mathrm{~V} / 100 \mathrm{~W}$, 6 module	86-87
PS-100-24	6M-DIN	$\begin{gathered} \text { AC } 230 \mathrm{~V}, \\ -20 /+10 \% \end{gathered}$		\bullet	\bullet	DC24V	4.2A	S	\bullet	\bullet	\bullet	stabilized switching power supply with fixed output voltage 24V / 100W, 6 module	86-87
DR-60-12	4.5M-DIN	AC $100-240 \mathrm{~V}$ DC $124-370 \mathrm{~V}$		\bullet		DC12V	4.5A	S				efficient switching power supply of $D C$ voltage $12 \mathrm{~V} / 54 \mathrm{~W}$, wide range of input voltage (AC 100-240 and DC 124-370V)	85
DR-60-24	4.5M-DIN	AC $100-240 \mathrm{~V}$ DC $124-370 \mathrm{~V}$		\bullet		DC24V	2.5 A	S				efficient switching power supply of DC voltage $24 \mathrm{~V} / 60 \mathrm{~W}$, wide range of input voltage (AC 100-240 and DC 124-370V)	85
ZTR-8-8	2M-DIN	$\begin{gathered} \text { AC } 230 \mathrm{~V}, \\ -15 /+10 \% \end{gathered}$	\bullet			8V	1A	-			-		89
ZTR-8-12	2M-DIN	$\begin{gathered} \text { AC 230V, } \\ -15 /+10 \% \end{gathered}$	\bullet			12 V	0.66A	-			\bullet	bell transformer (short-circuit-proof) for supply og bells, door openers, home call-boxes	89
ZTR-15-12	3M-DIN	$\begin{aligned} & \mathrm{AC} 230 \mathrm{~V}, \\ & +/-10 \% \end{aligned}$	\bullet			4-8-12V	2-1.5-1A	-			\bullet		89

Switch mode power supplies DR

- Stabilized switching power supply
- Input voltage (Uprim) in a wide range 100-240 V AC
- DR-60-12: power supply with fixed output voltage DC 12 V , stabilized 54 W
- DR-60-24: power supply with fixed output voltage DC 24 V , stabilized 60 W
- Max. load 12 V-4.5 A, 24 V -2.5 A
- Electronic protection of short-circuit, over-loading, over-voltage, fine setting of output voltage by trimmer in a range $\pm 10 \%$
- LED power indicator light, viewable from the front panel
- Ambient air cooled through the perforated housing

EAN code

- 4.5-MODULE, DIN rail mounted, isulation class II

DR-60-12V: 8595188125048
DR-60-24V: 8595188125055

Standards:
EN 61010-1, EN 61558-1, EN 61558-2-17

Description

Switch mode power supplies PS

EAN code

PS-10-12V 8595188139052
PS-10-24V 8595188139069
PS-30-12V 8595188137966
PS-30-24V 8595188139045
PS-30-R 8595188136655
PS-100-12V 8595188137195

- PS-10: switching stabilized power supplies with fixed output voltage, version 1-module

PS-10-12 - stabilized power supply $12 \mathrm{~V} / 10 \mathrm{~W}$
PS-10-24 - stabilized power supply $24 \mathrm{~V} / 10 \mathrm{~W}$

- PS-30: switching stabilized power supplies, version 3-module

PS-30-12 - stabilized power supply with fixed output voltage $12 \mathrm{~V} / 30 \mathrm{~W}$
PS-30-24 - stabilized power supply with fixed output voltage $24 \mathrm{~V} / 30 \mathrm{~W}$
PS-30-R - stabilized regulated power supply $12-24 \mathrm{~V} / 30 \mathrm{~W}$

- PS-100: stabilized power supply with fixed output voltage, version 6-module

PS-100-12 - stabilized power supply $12 \mathrm{~V} / 100 \mathrm{~W}$
PS-100-24 - stabilized power supply $24 \mathrm{~V} / 100 \mathrm{~W}$

- Output current is limited by electronic fuse, in case maximal current is exceeded, the device switches off and after a shot time interval it again switches on.
- Indication of output voltage by green LED on front panel
- Indication of overload by red LED on front panel - only for PS-30-R.
- Temperature protection - if temperature is exceeded, the device switches off and after cooled down, it switches on again.

Technical parameters:	PS-10-12	PS-10-24	PS-30-12	PS-30-24	PS-100-12	PS-100-24

Input

Voltage range:	AC $230 \mathrm{~V} / 50-60 \mathrm{~Hz}$						
Supply voltage tolerance:			-20\%; +10\%				-15\%;+10\%
Burden without load (max):	5VA / 2 W		5VA / 2 W		6VA / 2 W		4VA/2W
Burden with full load (max):	25VA / 13W		78VA / 40W		195VA / 118W		71VA / 40W
Protection:	fuse T1A		fuse T2A		fuse T3.15A		fuse T1A
Output							
Output voltage DC / max. current:	12.2V/0.84A	24.2V/0.42A	12.2V/2.5A	24.2V/1.25A	12.2V/8.4A	24.2V/4.2A	$\begin{gathered} 12.2 \mathrm{~V} / 2.5 \mathrm{~A} \\ 24.2 \mathrm{~V} / 1.25 \mathrm{~A} \end{gathered}$
Tolerance of output voltage:							$\pm 3 \%$

Output indication:
Wave of off-load output voltage:

	80 mV	80 mV	55 mV	80 mV
Wave of output voltage with max load:	20 mV	20 mV	5 mV	40mV
Time delay after connection:		max. 0.5s		max.1s
Time delay after over-load		max. 0.5s		max.1s
Overload capacity:		max. 120\% of rated output		

Efficiency:	> 75%	>75\%	>82\%	>77\%
Electronic fuse:		t-circuit		

Other information

Working humidity:
Operating temperature:
Storage temperature:
Electrical strength input- output:
Protection degree:
Overvoltage category:
Polutioon degree:
Max. cable size (mm^{2}):
Dimensions: $\quad 90 \times 17.6 \times 64 \mathrm{~mm}\left(3.5^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5^{\prime \prime}\right)$
Weight: $\quad 62 \mathrm{~g}(2.2 \mathrm{oz}$. $\quad 62 \mathrm{~g}(2.2 \mathrm{oz})$.
Standards:

```
62g(2.2 oz.) 62 g (2.2 oz.)
```

20 .. 90% RH
$-20^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right)$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.185^{\circ} \mathrm{F}\right)$
4 kV
IP20 device/ IP40 in-built in distribution board
solid wire max. 1×2.5 or $2 \times 1.5 /$ with sleeve max. 1×1.5

$90 \times 52 \times 65 \mathrm{~mm}\left(3.5^{\prime \prime} \times 2^{\prime \prime} \times 2.6^{\prime \prime}\right)$	$90 \times 105 \times 65 \mathrm{~mm}\left(3.5^{\prime \prime} \times 4.1^{\prime \prime} \times 2.6^{\prime \prime}\right)$		$90 \times 52 \times 65 \mathrm{~mm}\left(3.5^{\prime \prime} \times 2^{\prime \prime} \times 2.6^{\prime \prime}\right)$	
$136 \mathrm{~g}(4.8 \mathrm{oz})$.	$136 \mathrm{~g}(4.8 \mathrm{oz})$.	$375 \mathrm{~g}(13.2 \mathrm{oz})$.	$363 \mathrm{~g}(12.8 \mathrm{oz})$.	$152 \mathrm{~g}(5.4 \mathrm{oz})$.
EN 61558-1, EN 61010-1, EN 61558-2-17				

EN 61558-1, EN 61010-1, EN 61558-2-17

Connection

Switch mode power supplies PS

Regulated stabilized power supply ZSR-30

- Supply of various devices and appliances by safe voltage with fully galvanic separation from the main.
- Input voltage: AC 230 V
- Output voltage: DC 5-24V stab., DC 24 V unstab. and AC 24 V
- Exceeded current limit values is indicated by LED flashing
- When there is full short-circuit, output is disconnected, output current is limited by an electronic fuse
- 3-MODULE, DIN rail mounting

Nonstabilized power supply ZNP-10-12V, ZNP-10-24V

- Power supply with fixed output voltage
- $A C$ and $D C$ output voltage: 12 V or 24 V , nonstabilized
- Protection against short-circuit and overload by a safety fuse
- Input voltage: AC 230 V
- 3-MODULE, DIN rail mounting ZNP-10-24V: 8594030334089 ZSR-30: 8594030331750

Technical parameters	ZSR-30	ZNP-10-12V	ZNP-10-24V	Connection
Entry (Uprim)				
Voltage range:		AC $230 \mathrm{~V} / 50-60 \mathrm{~Hz}$		
Supply voltage tolerance:		-15\%; +10\%		
Consumption without load (max):	6VA	7VA	6.5VA	ZSR-30
Consumption with load (max):	10VA	11 VA		

Output voltage:	DC5-24V stab.		
	DC24V nonstab.	DC 12 V nonstab.	DC 24 V nonstab.
	AC24V	AC 12 V	AC 24 V

Out Ou Fus
 Fuse:

Wave of output voltage:
Efficiency:
Tolerance of output voltage:
Electronic fuse:
Other information:
Operating temperature:
Storing temperature:
Electrical strenght (prim/sec):
Protection degree:
Max. cable size $\left(\mathrm{mm}^{2}\right)$:
Dimensions:
Weight:
Standards:

DC 12 V nonstab.	DC 24 V nonstab.
AC 12 V	AC 24 V

32 V
44 V
max. 3 V

WARNING! Values of max. load are valid for (operational) temperature.
Total loads on all output terminals may not exceed this values:
by supplying $230 \mathrm{~V}-253 \mathrm{~V}-8 \mathrm{~W}$
from 230 V . . 207 V output power is eaqualy decreesing onto 5 W

Description

Memory relays

Control and signalling devices

Twilight switchs

Accessories
of twilight switches:

Sensor to SOU-1 and SOU-2
Protection degree: IP56.
Issuitable for mounting on the wall or in panel.

- Serves to control lights on the basis of ambient light intensity
- Used for switching street illumination and garden lights, illumination of advertisements, shop windows, etc.
- Level of ambient intensity is monitored by an external sensor and output is switched according to set level on the device
- Control input for additional control, e.g. time switch, preswitch etc.
- Level of illumination adjustable in two ranges: 1-100 Lx and 100-50000 Lx
- Sdjustable time delay to eliminate short term fluctuation in illumination
- External sensor IP56 suitable for mounting on the wall (cover and holder of a sensor are a part of the package)
- Supply voltage AC 230 V or AC/DC 12 - 240 V
- Output contact: 1x changeover/ SPDT 16A
- Red LED output indication
- 1-MODULE, DIN rail mounting

Twilight switch SOU-2 with digital time switch clock

Ambient light sensor SOU-3

EAN code
SOU-3/230V: 8595188140560
Technical parameters SOU-3

Supply

Supply terminals:	$\mathrm{L}-\mathrm{N}$
Voltage range:	$\mathrm{AC} 230 \mathrm{~V} / 50-60 \mathrm{~Hz}$
Tolerance of Voltage range:	$-15 \% . .+10 \%$
Input (apparent/loss):	max $6 \mathrm{VA} / 0.7 \mathrm{~W}$
Setting the scale level of lighting:	by jumper J2
Function © (twilight switch)	
- range 1:	$1 \ldots .10 \mathrm{Lx}$
- range 2:	$10 \ldots 100 \mathrm{Lx}$
- range 3:	$100 \ldots 1.000 \mathrm{Lx}$

Function :- (light switch)

- range 1:	$100 \ldots . .1000 \mathrm{Lx}$
- range 2:	$1000 \ldots 10000 \mathrm{Lx}$
- range 3:	$10000 \ldots 100000 \mathrm{Lx}$
Setting function	by jumper J3
Level of light-slight:	$0.1 \ldots 1$ x range
Slight setting of light level:	potenciometer
Time delay t:	$0 / 1$ min. / 2 min.
Delay setting t:	by jumper J1

Output

Output contact:	$1 \times \mathrm{NO}-\mathrm{SPST}\left(\mathrm{AgSnO}_{2}\right)$
Current rating:	$12 \mathrm{~A} / \mathrm{AC1}$
Switching output:	$3000 \mathrm{VA} / \mathrm{AC1}, 384 \mathrm{~W} / \mathrm{DC}$
Peak current:	$30 \mathrm{~A} /<3 \mathrm{~s}$
Switched voltage:	$250 \mathrm{VAC} / 24 \mathrm{VDC}$
Min.switching output:	500 mW
Mechanical life:	3×10^{7}
Electrical life:	0.7×105
Other information:	
Operation temperature:	$-30^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$
Storing temperature:	$-30^{\circ} \mathrm{Cto}+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
Electrical strengh:	4KV (supply-output)
Operation position:	sensor-side down or on the sides
Protection degree:	IP65
Overvoltage cathegory:	III.
Pollution level:	2
Max. cable size (mm^{2}):	max. 1×2.5 max. $2 \times 1.5 /$ with sleeve max. 1×2.5 (AWG 12)
Suggested power-supply cable:	CYKY 3x2.5 (CYKY4x1.5)
Dimensions:	$98 \times 62 \times 34 \mathrm{~mm}$ ($\left.3.9^{\prime \prime} \times 2.4^{\prime \prime} \times 1.3^{\prime \prime}\right)$
Weight:	122 g (4.3 oz.$)$
Standards:	EN 60255-6, 61010-1

Function

■ Serves as control of the device on the basis of ambient light intensity.

- External version in IP65, box for mounting on the wall
- Built in high resolution light sensor
- Two devices in one, function is set by jumper:
- twilight switch - contact closes by decreasing of ambient light intensity, and opens by its increasing. -light switch - contact closes by increasing ambient light intensity, and opens by decreasing light intensity. Used for switching of devices by reaching of pre-set ambient light level, usually sun shine(pulling down the shutters or blinds, activation of solar panels) adjustable (by jumper) ranges of light level
- 3 adjustable levels of time delay (for elimination of short-term fl uctuations of light intensity - for short increases in light intensity)
- Supply voltage 230 V AC
- Potentialless NO- SPST contact 12 A/AC1 switching

Description (proportion is accordant to real size)

Connection

Device is standardly supplied with jumper L-15 (3-wire connection). For the correct function of device is neccesary sensor-side down device mounting.

Memory \& latching relays MR-41, MR-42

- Latching relays, controlled by buttons from several locations can replace three way switches or cross bar switches thanks to control by buttons (unlimited number, connected in parallel by 2 wires), installation gets more transparent and faster for mounting
- Using single poles switches from several locations, installation will be lower cost and wiring less complicated.
- Relay MR-41/UNI, MR-42/UNI returns to the last state if A1-A2 power is lost
- MR-41 - output contact: 1x changeover / SPDT 16 A
- MR-42
- options - $2 x$ parallel contacts or the other relay is latching
- function selected via external jumper between B1 - B2
- output contact: 2x changeover /SPDT 16 A
- Supply voltage AC 230 V or AC/DC $12-240 \mathrm{~V}$

| Technical parameters | MR-41 | | |
| :--- | :---: | :---: | :---: | :---: |
| Number of functions: | 1 | | 2 |
| Supply terminals: | | A1-A2 | |

Voltage range: $\quad A C / D C 12-240 \mathrm{~V}(\mathrm{AC} 50-60 \mathrm{~Hz})$

Burden:
Voltage range:
Consumption (apparent/loss):
Supply voltage toleranc
Supply indication:
Output
Number of contacts:
Current rating:
Breaking capacity:
Inrush current:
Switching voltage:

Min. breaking capacity DC:
Output indication:
Mechanical life:
AC0.17-3VA/DC0.1-1.2W AC0.17-12 VA/DC0.11-1.9W
AC $230 \mathrm{~V} / 50-60 \mathrm{~Hz}$
AC max. 12 VA/1.2 W
AC max. $12 \mathrm{VA} / 1.9 \mathrm{~W}$
$-15 \% ;+10 \%$
green LED
$1 \times$ changeover / SPDT $\left(\mathrm{AgSnO}_{2}\right) \quad 2 x$ changeover/ SPDT $\left(\mathrm{AgSn}_{2}\right)$
$16 \mathrm{~A} / \mathrm{AC} 1$
4000 VA / AC1, 384 W / DC
$30 \mathrm{~A} /<3 \mathrm{~s}$
$250 \mathrm{VAC} / 24 \mathrm{VDC}$
500 mW

Electrical life (AC1):
red LED

Controlling
Consumption of input:
Load between A2-ON/OFF:
AC 0.025-0.2 VA / DC 0.1-0.7 W (UNI), AC $0.53 \mathrm{VA}(\mathrm{AC} 230 \mathrm{~V}$)
Yes
Control. terminals:
Max. capacity of cable control:

- without connected glow-lamps
-with connected glow-lamps

Impulse length:
Other information
Operating temperature:
Storage temperature:
Electrical strength:
Operating position:
Mounting/DIN rail:
Protection degree:
Overvoltage cathegory:
Pollution degree:
Max. cable size $\left(\mathrm{mm}^{2}\right)$:
Dimensions:
Weight:
Standards:

A1-0N/OFF

12 nF
(UNI), glow lamps cannot connected
$9 \mathrm{nF}(\mathrm{AC} 230 \mathrm{~V})$, max.pcs 4ks(1ks-1mA)
min. 25 ms / max. unlimited
$-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$
$-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
4 kV (supply - output)
any
DIN rail EN 60715
IP 40 from front panel / IP 20 terminals
III.

2
solid wire max. 1×2.5 or $2 \times 1.5 /$ with sleeve max. 1×2.5 (AWG 12)
$90 \times 17.6 \times 64 \mathrm{~mm}\left(3.5^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5^{\prime \prime}\right)$
(UNI) $-62 \mathrm{~g},(230)-60 \mathrm{~g} \quad$ (UNI) $-89 \mathrm{~g},(230)-85 \mathrm{~g}$
EN 61810-1, EN 61010-1

Symbol

MR-41

Connection

MR-41

Function

MR-41

MR-42

Controlling and signalling modules USS

- Independent switch units designed for flexible controlling and switching of power circuits
- USS - "Do It Yourself" = it is possible to "click into" different types of switches and signalling units into the basic module
- Units are delivered as components and configured by the user
- 15 types of units: switches, push buttons, signal lights of different colours including flashing lights units are replaceable also for future (for example when an application is changed, extended, etc...)
- It is possible to place up to two units into one MODULE (for example $2 x$ switch,
$2 x$ signalling lights or combinations) $=$ saves space in switchboard panels
- 1-MODULE, DIN rail mounting
- Operating temperature $-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$
- M3 screw with clamp terminals

EAN code
USS-ZM 8595188124577 USS-00 8595188124614 USS-01 8595188124621
USS-02 8595188124638 USS-03 8595188124645
USS-04 8595188124652
USS-05 8595188124669
USS-06/S 8595188124676
USS-06/R 8595188136372 USS-07 8595188124683 USS-08 8595188124690 USS-09 8595188124706 USS-10 8595188124331 USS-11 8595188124348 USS-12 8595188124355 USS-13 8595188124362 USS-14 8595188124898 USS-15 8595188124379
Units
CONNECTION INDICATION
RATED CURRENT/VOLTAGE
(FOR SWITCHES) SUPPLY
VOLTAGE (FOR SIGNALLING

USS-ZM	MODUL
USS-00	\square

USS-05

$10 \mathrm{~A} / 250 \mathrm{~V}$
Switch
$10 \mathrm{~A} / 250 \mathrm{~V}$ Alternation switch
$6 \mathrm{~A} / 250 \mathrm{~V}$ Switch with cental position
$4 \mathrm{~A} / 250 \mathrm{~V}$ Switch + button with central position
$4 \mathrm{~A} / 250 \mathrm{~V}$

4A/250V
NO switch
USS-06/S A3 (A13) $\overbrace{\text { (A12) }}^{\text {A1 }}$

USS-08

USS-09

$10 \mathrm{~A} / 250 \mathrm{~V} \quad$ Switch with glow lamp (yellow)
$10 \mathrm{~A} / 250 \mathrm{~V} \quad$ Switch with glow lamp (yellow)
NC switch
$10 \mathrm{~A} / 250 \mathrm{~V}$
Switch with glow lamp (red)
$10 \mathrm{~A} / 250 \mathrm{~V}$ Switch with glow lamp (green)

A1-A2, AC 250 V
A1-A3, AC/DC 24 V
Signalling LED (red)

A1-A2, AC 250 V Signalling LED (green) A1-A3, AC/DC 24 V

A1-A2, AC 250 V Signalling LED (yellow) A1-A3, AC/DC24V

A1-A2, AC 250 V Signalling LED (white) A1-A3, AC/DC 24 V

A1-A2, AC 250 V Signalling LED flashing (red)

 A1-A3, AC/DC 24 VA1-A2, AC 250 V Signalling LED (blue) A1-A3, AC/DC 24 V

Make your own device USS - easy and intelligent solution!

AC 250 V .
Unit: 07-09

SIGNALLING LIGHT

Highluminescence SMD/LED thatilluminates the entire button area surface. Input voltage can be either AC 230 V or AC/DC 24 V (output light may vary).
Red sig. light is delivered also in a flashing
version.Unit: 14.
Colours: red, green, yellow, white, blue
Unit: 10-15

APEM

75 (1)

Switching units (01-06) come form a wellknown French company APEM. High quality contacts will provide years of switching service. Quality of switches is garanteed by many years of experience in this fi eld (since 1952) and by worldapproved certifi cates VDE a UL. A unique switching mechanism ensures long-term life of switching with continual parameters.

Dimensions

See page 158-161

Note

CURRENT

LEVEL

- Control of current flow.
- Monitoring of heating poles on rail-switches.
- Monitor levels in wells,basins, reservoirs or pools.
- Monitoring of heating rods on junctions -for control systems, motors or monitoring

MONITORING RELAY

VOLTAGE

- Protection of appliances and devices against under-voltage/over-voltage.
- Control of phase sequence and failure in a switchboard.

MONITORING RELAYS

Relay monitoring

Relay monitoring																
HRN-33	A	11	-	\bullet		\bullet	\bullet	from monitoed		$160-276 \mathrm{~V}$		30-95\%	\bullet	1		- normal cosed contact, opened when exeeding MAX or MIN and diming
HRN-34	A	1	\bullet	\bullet		-	\bullet	from monitreed		18-30		35-95\%	\bullet	1		-like HRN- 33 , but monitoring battery circuits and supply
HRN-35	A	1	\bullet	-		\bullet	-	from monitored		$160-276 \mathrm{~V}$		30-95\%	\bullet	2		
HRN-37	A	1	-	-		-		from monitoed		80-150V		30-95\%	-	1		- contacti n normal State cosed, in cse M M X or M1N levels dare overpassed, ,iming ofdelay stops
HRN-63	A	1	-	-		\bullet		from monitoed		$160-276 \mathrm{~V}$		30-95\%		-1		- contact switches when exceeding MAX leve, when falling below MIN level, it wwithes off dfera delay
HRN-64	A	1	-	\bullet		-		from monitoed		18-30V		35-95\%		-1		- contact swithes when exceeding MAX leve, when falling below M11 level, it swithe off ffera delay
HRN-67	A	1	-	-		-		from monitoed		80-150V		30-95\%		- 1		- contact swithes when exceeding MAX leve, when falling below M1N evel, it swithe off dfera delay
HRN-41	A		- -			- -	\bullet	AC230	\bullet	$12.5-50 \mathrm{~V}$		30-90\%		\bullet	\bullet	- -moitoes AC and DC, gavanicly separated measured and supply ciruuits
							\bullet	ACIDC24V	\bullet	12.550 V		30-90\%		-	-	- -3 measuring a anges, min a diusted 35% of lmax
							-	ac400	\bullet	40-60V		30-90\%		-	-	- -2 output independentrelay for each level
							-	actiov	-	125-500		30-90\%		-	-	
HRN-42	A	3	- -			$\bullet \bullet$	\bullet	AC230	\bullet	125-50	12.5-50			- 2	-	-
							-	ACIDC24V	\bullet	12.5.50	12.5-50			-	-	- -like HRN-41, but Umaxand Umin adjusted in \% acc. tomeasured range
							-	AC400 V	\bullet	40-160 V	40-160 V			-	-	-
							-	AC 110 V	\bullet	125-500	125-500			-	-	-
HRN-43	A	33	-	- -	- - -	\bullet	-	AC 230,40, ACIDC 24 V	\bullet			35-99\%	\bullet	- 2	\bullet	- - lie HRN-43N, but for $3 \times 100 \mathrm{~V}$ without netural
HRN-43N	A	33	-	- -	- - -	\bullet	-	AC 230,400, ACIDC 24 V	\bullet	240-480		35-99\%	-	- 2	\bullet	- -in 3 -phase mains monitooing voltage, filiur, sequence and dsymmetry of phases, For $3 \times 400 / 230 V$.
HRN-55	A	31		- -	- -	-		from monitered		138-276V			\bullet	1		- monitos phase sequence and dililur in 3 -phase mins, designated for icicuits 3x400
HRN-55N	A	31		$\bullet \bullet$	- -	-	-	from monitoed					\bullet	1		
HRN-57	A	31	-	$\bullet \bullet$		-	-	from monitoed		$420-500 \mathrm{~V}$	300-380V		\bullet	1		- monitor under/vere volage i 3 --phase mains, designated for circuitrs 3x400
HRN-57N	A	31	-	- -	-	\bullet	\bullet	from monitoed		242-288V	173-2192		\bullet	1		
HRN-54	A	31	-	- -	-	\bullet	\bullet	from monitoed		420-500	300-380		-	1		- monitor under/vere volage i 3 --phase mains, designated for circuits 3x400
HRN-54V	A	31	-	- -	- -	\bullet	-	from monitoed		242-288V	173-219V		-	1		- monitos underlover voltage in 3 -phase mains, disconnection of neutral wire, designated for icrucitis $3 \times 000 \mathrm{~V} / 23 \mathrm{~V}+\mathrm{N}$
HRN-56 (1 M)	A	31		$\bullet \bullet$	$\bullet \bullet$	\bullet		from monitoed						-1		- monitors phase sequence and dailur, designated for ciricuits 3x120V, 3x2081, 32240V, 3x400
HRN-56 (3M)	A	33		- -	- -	\bullet		from monitoed						\bullet		- monitors phase sequence and faliur, designated for circuits 3x880V, 35575V

Relay monitoring current

Monitoring voltage relay line HRN-3x and line HRN-6x

- Serves to control supply voltage for appliances sensitive to supply tolerance, protection of the device against under/over voltage
- HRN-3x is band voltage relay, HRN-6x is over/under voltage relay. For difference - pes see grach of function HRN-33, HRN-63 - monitors voltage in range AC 48-276V
- U max and U min can be monitored independently

HRN-34, HRN-64 - like HRN-33, but voltage range is DC 6-30 V

- monitoring of battery circuits $(12,24 \mathrm{~V})$

HRN-35 - like HRN-33, but independent output relays for each voltage level - switching of other loads possible

HRN-37, HRN-67 - like HRN-33, monitors voltage in range AC $24-150 \mathrm{~V}$

- it is possible to monitor level of overvoltage and undervoltage independently
- Adjustable time delay for all types is $0-10 \mathrm{~s}$ (to eliminate short voltage drops or peaks)
- Voltage Umin adjusted as \% of Umax
- 3-state indication - LEDs indicating normal state and 2 fault states
- Supply from monitored voltage (monitors level of its own supply)
- 1-MODULE, DIN rail mounting
HRN-64 8595188130639
HRN-67 8595188130646

HRN-33/ HRN-63

HRN-34/ HRN-64
HRN-35
HRN-37/ HRN-67

Supply and measuring

Terminals:
Voltage range:
Burden:
Upper level (Umax):
Bottom level (Umin):

Max. permanent:
Peak overload <1ms:
Time delay:
Accuracy
Setting accuracy (mechanical):
Repeat accuracy:
Dependance on temperature:
Tolerance of limit values:
Hysteresis (from fault to normal):
Output - Number of contacts:
Current rating:
Breaking capacity:
Inrush current:
Switching voltage:
Min. breaking capacity $D C$:
Output indication:

A1-A2	A1-A2
$A C 48-276 \mathrm{~V} / 50 \mathrm{~Hz}$	$D C 6-30 \mathrm{~V}$
$A C \max .1 .2 \mathrm{VA}$	$D C$ max. 1.2 VA
$A C 160-276 \mathrm{~V}$	$D C 18-30 \mathrm{~V}$
$30-95 \% \mathrm{max}$	$35-95 \% \mathrm{Umax}$
$A C 276 \mathrm{~V}$	$D C 36 \mathrm{~V}$
$A C 290 \mathrm{~V}$	$D C 50 \mathrm{~V}$

Con

A1-A2	A1-A2
$A C 48-276 \mathrm{~V} / 50 \mathrm{~Hz}$	$A C 24-150 \mathrm{~V} / 50 \mathrm{~Hz}$
$A C$ max. 1.2 VA	$A C$ max. 1.2 VA
$A C 160-276 \mathrm{~V}$	$\mathrm{AC} 80-150 \mathrm{~V}$
$30-95 \% \mathrm{max}$	$30-95 \% \mathrm{Umax}$
$A C 276 \mathrm{~V}$	$A C 276 \mathrm{~V}$
$A C 290 \mathrm{~V}$	$A C 290 \mathrm{~V}$

adjustable 0-10s

Mechanical life:
5\%

Electrical life (AC1):

Other information

Operating temperature:
$-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$
Storage temperature:
$-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
4 kV (supply - output)
any
Operating position:
Mounting:
DIN rail EN 60715
Protection degree:
IP 40 from front panel
Overvoltage cathegory:
Pollution degree:
Max. cable size $\left(\mathrm{mm}^{2}\right)$:
III.
Dimensions: solid wire max. 1×2.5 or 2×1.5, with sleeve max. 1×2.5 (AWG 12)

Weight:	$61 \mathrm{~g}(2.2 \mathrm{oz}$.	73 g (2.6 oz.)	85 g (3 oz.)	61 g (2.2 oz.)
Standards:	EN 60255-6, EN 61010-1			

Symbol

HRN-33, HRN-37,
HRN-63, HRN-67

HRN-35

Connection

Description

Function HRN-33, 34, 35, 37 (band voltage relay)

HRN-33,HRN-37

HRN-35

HRN-34

Legend:
Umax - upper adjustable level of voltage Un - measured voltage
Umin - bottom adjustable level of voltage 15-18 - switching contact of output relay No. 1 25-28 - switching contact of output relay №. 2 LED \geq Un - indication green LED U \gtrless - indication red

Function HRN-63, 64, 67 (over/under voltage relay)

Legend:

Umax - upper adjustable level of voltage Un - measured voltage Umin - bottom adjustable level of voltage 15-18- switching contact of output relay LED U $>$ - indication red

Monitoring relay series HRN-3x monitors level of voltage in single - phase circuits. Monitored voltage serves also as supply voltage. It is possible to set two iindependant (all occurrences) levels of voltage, when exceeded the output is activated. HRN-33 and HRN-34 - in normal state the output relay is permanently switched. It switches off when there is a limit settings. This combination of linkage of the output relay is advantageous when the full failure of supply (monitored) voltage is considered to be a faulty state in the same way as a decrease of voltage within the set level. Output relay is in both situations always switched off.
Diff erently HRN-35 version uses independayt relay for each level, in normal state it is switched off . If the upper level is exceeded (for example overvoltage) 1 relay switches on, when the bottom level (e.g. undervoltage) is exceeded 2 relay switches. It is thus possible to see the particular faulty state. To eliminate short peaks in the main the time delay, which is possible to be set in range $0-10 \mathrm{~s}$, is used. It functions when changing from normal to faulty state and prevents unavailing pulsation of the output relay caused by parasitive peaks. Time delay doesn't apply when changing from faulty to normal state, but hysteresis (1-6\% depends on the voltage setting) apply. Thanks to changeover contacts it is possible to get other confi gurations and functions according to actual requirements of the application.

Monitoring relay line HRN-6x serves to monitor levels of voltage in single-phase or DC circuits. Monitored voltage is in the same time also supply voltage. It is possible to set two independayt levels of voltage. When Umax is exceeded, output is activated. In case voltage level falls below Umin, output is deactivated. This combination is advantageous when full absence of supply voltage is understood as faulty state. as well as voltage drop in the frames of set level. To eliminate short voltage peaks in the main there is time delay which can be set in a range of 0-10 sec. Such delay applies in case of going from overvoltage to undervoltage. In case of returning from undervoltage to overvoltage this delay doesn't apply. Thanks to changeover output contacts it is possible to reach various configurations and functions according to requirements or an application.

Relay for monitoring phase sequence and failure HRN-55, HRN-55N

- Replacement for HRN-51 and HRN -51N
- Relay monitors phase sequence and failure, exceeding of monitored voltage in 3 phase main
- HRN-55 - supply from all phases, which means that function of relay is applicable also if one phase fails
- HRN-55N - supply L1-N, it means that relay also monitors break of neutral point
- Fixed delay T1 (500 ms) and adjustable delay T2 (0.5-10s)
- Faulty state is indicated by LED and output contact of relay is OFF.
- Output contact: $1 x$ changeover / SPDT 16 A / 250 V AC1
- 1-MODULE, DIN rail mounting

Technical parameters	HRN-55	HRN-55N
Monitoring terminals:	L1, L2, L3	L1, L2, L3,N
Supply terminals:	L1, L2, L3	L1, N
Voltage:	$3 \times 400 \mathrm{~V} / 50 \mathrm{~Hz}$	$3 \times 400 \mathrm{~V} / 230 \mathrm{~V} / 50 \mathrm{~Hz}$
Level Umax:	125 \% Un	
Level Umin:	75\% Un	
Burden:	max. 2 VA	
Hysteresis:	5\%	
Max. permanent:	AC $3 \times 460 \mathrm{~V}$	AC $3 \times 265 \mathrm{~V}$
Peak overload <1ms:	AC $3 \times 500 \mathrm{~V}$	AC $3 \times 288 \mathrm{~V}$
Time delay $\mathrm{T1}$:	max. 500 ms	
Time delay T2:	adjustable 0.1-10 s	

Output

Number of contacts:
Current rating:
Breaking capacity:
Inrush current:
Switching voltage:
Min. breaking capacity DC:
Output indication:
Mechanical life:
Electrical life (AC1):
Other information Operating temperature:
Storage temperature:
Electrical strength:
Operating position:
Mounting:
Protection degree:
Overvoltage cathegory:
Pollution degree:
Max. cable size $\left(\mathrm{mm}^{2}\right)$:
Dimensions:
Weight:
Standards:

Function description

Relay in 3-phase main monitors correct phase sequence and failure of any phase. Green LED is permanently ON and indicates presence of power supply voltage. In case of phase failure or exceeding voltage level red LED flashes and relay breaks. When changing to faulty state, time delay applies. Time delay setting is set by a potentiometer on front panel of the device. In case of incorrect phase sequence red LED shines permanently and relay is open. In case supply voltage falls below 60% Un (OFF lower level)relay immediately opens with no delay and faulty state is indicated by red LED.

HRN-55: thanks to supply form all phases, this relay is able to stay operational also if one phase is out.
HRN-55N -supply L1-N, means that relay monitor also failure in neutral wire

Symbol
HRN-55
HRN-55N

Function

- Serves to monitor voltage in a switchboard, protection of devices in 3-phase main
- Monitors value of voltage in 3-phase main
- It is possible to set upper and lower level independently
- Adjustable time delay eliminated short voltage peaks and failures in the main
- The device is supplied from monitored voltage
- Faulty state is indicated by red LED and by breaking output relay contact
- Output contact 1x changeover/ SPDT 8 A /250 V AC1
- Relay doesn't monitor phase sequence
- In case supply voltage falls below 60 \%Un (U off lower level) relay immediately switch OFF with no delay
- HRN-57 - supply from all phases, means that relay is functional also in case of failure in one phase
- HRN-57N -supply L1-N, means that relay monitors also failure of neutral wire, replacement for HRN-52
- 1-MODULE, DIN rail mounting

Technical parameters	HRN-57	HRN-57N
Monitoring terminals:	L1, L2, L3	L1, L2, L3,N
Supply terminals:	L1, L2, L3	L1, N
Voltage:	$3 \times 400 \mathrm{~V} / 50 \mathrm{~Hz}$	$3 \times 400 \mathrm{~V} / 230 \mathrm{~V} / 50 \mathrm{~Hz}$
Level Umax:	105-125 \% Un	
Level Umin:	75-95\%Un	
Burden:	max. 2 VA	
Hysteresis:	5\%	
Max. permanent overload:	AC $3 \times 460 \mathrm{~V}$	AC $3 \times 265 \mathrm{~V}$
Peak overload <1ms:	AC $3 \times 500 \mathrm{~V}$	AC $3 \times 288 \mathrm{~V}$
Time delay T :	max. 500 ms	
Time delay T2:	adjustable 0.1-10 s	

Function

Relay for monitoring over/under voltage, phase sequence and failure HRN-54, HRN-54N

- Serves to monitor voltage , phase failure and sequence in switchboards, protection of devices in 3-phase mains
- It is possible to set upper and lower level of monitoring voltage
- Adjustable time delay eliminates short voltage peaks and failures in the main
- Supply is done from monitored voltage
- Faulty state is indicated by red LED and by breaking output relay contact
- Output contact 1x changeover / SPDT 8 A / 250 V AC1
- In case supply voltage falls below 60% Un (Uoff lower level)relay immediately breaks with no delay
- HRN-54 - supply from all phases which means that relay is functional also in case when one phase is faulty
- HRN-54N -supply L1-N, means that relay monitors also failure of neutral wire
- 1-MODULE, DIN rail mounting

Electrical life (AC1):
Other information
Operating temperature:
Storage temperature:
Electrical strength:
Operating position:
Mounting:
Protection degree:
Overvoltage cathegory:
Pollution degree:
Max. cable size $\left(\mathrm{mm}^{2}\right)$:
Dimensions:
Weight:
$-20^{\circ} \mathrm{C}$ to ${ }^{+55^{\circ}}{ }^{\circ}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$
$-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
4 kV (supply - output)
any
DIN rail EN 60715
IP 40 from front panel / IP 10 terminals
III.
2
solid wire max. 2×2.5 or 1×4,
with sleeve max. 1×2.5 or 2×1.5

Standards:

$$
90 \times 17.6 \times 64 \mathrm{~mm}\left(3.5^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5^{\prime \prime}\right)
$$

$69 \mathrm{~g} \quad 67 \mathrm{~g}$
EN 60255-6, EN 61010-1

Function description

Relay in 3-phase main monitors size of phase voltage. It is possible to set two independayt voltage levels and thus it is possible to set two independayt voltage levels and monitor e.g. undervoltage and overvoltage independaytly. In normal state when voltage is within set levels, output relay is closed and red LED shines. In case voltage exceeds or falls below the set levels, output relay breaks and red LED shines (LED indicates faulty state - flashes when timing). In case of
In case supply voltage falls below 60% Un (UOFF lower level)relay immediately breaks without delay and faulty state is indicated by red LED.
In case timing is progress and faulty state is indicated, timing is immediately stopped.

Function

- Relay monitors phase sequence and failure (e.g. control of correct motor winding etc.)
- Relay designated for monitoring of 3-phase mains
- Supply from all phases which means that relay is functional also in case of one phase failure
- Supply and monitored supply Un:

1-MODULE	3-MODULE
HRN-56/208-3x120V	HRN-56/480-3x480 V
HRN-56/208-3x208V	HRN-56/575-3x575 V
HRN-56/240-3x240 V	
HRN-56/400-3x400 V	
Fixed time delayT1 (500 ms) and adjustable time delay T2 ($0-10 \mathrm{~s}$)	
Faulty state is indicated by LED and breaking contact of output relay	
Output contact 1x changeover/SPDT $8 \mathrm{~A} / 250 \mathrm{~V}$ AC1	
1-MODULE, 3-MODULE, DIN rail mounting	

Function description

Relay in 3-phase main monitor correct phase sequence and phase failure. Green LED shines permanently and indicates energization. Red LED flashes and relay breaks in case of phase failure. When changing to faulty state, time delay applies - delay setting is done by potentiometer on the front panel of the device. In case of incorrect phase sequence, red LED shines permanently and relays is open. In case supply voltage falls below 60% Un (Uoff lower level) relay immediately breaks with no delay and faulty state is indicate by red LED.
HRN-56: Thanks to supply from all phases, relay is functional also in case of failure on in one phase.

Function

Relay for complete monitoring 3-phase mains HRN-43, HRN-43N

 - voltage in 2 levels $160-276 \mathrm{~V}$ ($3 \times 400 / 230 \mathrm{~V}$) or $280-480 \mathrm{~V}$ ($3 \times 400 \mathrm{~V}$)- Function "MEMORY"- manual reset, "RESET" button on front pannel
- HRN-43N - for circuits $3 \times 400 / 230 \mathrm{~V}$ (with neutral)
- 2 output relays, selectable function of 2nd relay (independent / parallel)
- Fixed (t1) and adjustable (t2) delay to eliminate short voltage drops and peaks
- Galvanic isolated supply voltage $\mathrm{AC} 400 \mathrm{~V}, \mathrm{AC} 230 \mathrm{~V}, \mathrm{AC} / \mathrm{DC} 24 \mathrm{~V}$
- Output contact: 2x changeover/ DPDT 16A/250V AC1

Technical parameters

Supply

Supplyteminas:	A1-A2	
Voltage range:	AC230V, AC40	24V/(AC50-60Hz)
Burden:	max. 4.5VA	
Supply voltage toleance:	-15%; 10%	
Measuring circuit		
Nominal voltage:	$3 \times 400 \mathrm{~V} / 5 \mathrm{~Hz}$	$3 \times 400 \mathrm{~V} / 230 \mathrm{~V} / 5 \mathrm{OHz}$
Terminas:	L1, L2, 13	$\mathrm{LI}_{1212,13, \mathrm{~N}}$
Upper level Umax:	240-480	138-276V
Bottom level Umin:	35-99\%Umax	
Max. permanentoverload:	3x480	
Hysteresis:	adjustale 5% or 10% of set value	
Asymmetry:	5-20\%	
Peak verlod <1ms:	$600<1 \mathrm{~ms}$	$350 \mathrm{~V}<1 \mathrm{~ms}$
Time delay t 1:	fxed, max. 200 ms	

Time delay tre

Accuracy
Set. accuracy (mechanical):
Repeat accuracy:
Temperature dependance:
Limit values tolerance:
Output
Number of contacts:
Current rating:
Breaking capacity:
Inrush current:
Switching voltage:
Min. breaking capacity DC:
Mechanical life:
Electrical life (AC1):
Other information
Operating temperature:
Storage temperature:
Electrical strength:
Operating position:
Mounting:
Protection degree:
Overvoltage cathegory:
Pollution degree:
Max. cable size $\left(\mathrm{mm}^{2}\right)$:
Dimensions:
Weight:
Standards:

- Monitoring 3-phase mains: - phase imbalance
- phase sequence
- phase failure
- HRN-43 - for circuits $3 \times 400 \mathrm{~V}$ (without neutral)
- 3-MODULE, DIN rail mounting

HRN-43N Description

Symbol

HRN-43

HRN-43N

Connection

HRN-43N
HRN-43

Function

Phase sequence

Asymmetry - phase failure

Legend:
L1, L2, L3-3-phase voltage
RESET - press of the button on frontal pannel
t1-time delay, fixed
t2 - time delay, adjustable $0-10 \mathrm{sec}$
15-18 output relay 1
25-28 output relay 2
LED $\gtrless U$ - indication overvoltage / undervoltage
Selection of 2nd relay function:
In order to monitore 2 levels of voltage, it is possible to select if output relay will respond to each level individually (see the diagram) or both relays will switch in parallel way (see diagram"phase sequence"). Selection via DIP switch.

Legend:
L1, L2, L3-3-phase voltage
RESET - press of the button on frontal pannel
t1-time delay, fixed
t2 - time delay, adjustable 0-10 sec
15-18 output relay 1
25-28 output relay 2
LED \leftrightharpoons indication of range of phases
Selection of 2nd relay function:
The function is not implied when monitoring phase sequence, the relays are switched in parallel way.

Legend:
L1, L2, L3-3-phase voltage
RESET - press of the button on frontal pannel
t1-time pause, fixed
t2 - time pause, adjustable $0-10 \mathrm{sec}$
人- adjustable asymmetry 5-20\%
15-18 output contact of relay 1
25-28 output contact of relay 2
LED 人 - asymmetry indicator

Selection of 2nd relay function:

The function is not implied when monitoring phase sequence, the relays are switched in parallel way.
DIP switch is ignored.

Function description

Relay is designated to monitor 3-phase circuits. Type HRN-43N controls voltage against neutral wire, type HRN-43 controls interphase voltage. Relay can monitor voltage in two levels (overvoltage/ undervoltage), phase assymetry, sequence and failure. Each faulty state is indicated by individual LED. By DIP switch (N 0.3) it is possible to define function of the other relay - independayt function (1 x for overvoltage, $1 x$ for undervoltage) or in parallel. Time delays $t 1$ (fixed) - when changing from faulty to normal state or when de-energized and t2 (adjustable) when changing from normal to faulty state. These delays prevent incorrect conduct and oscillation of output device during short voltage peaks in the main or during gradual voltage decline into normal.
Voltage control
Set upper level Umax in range 138-276V (or 240-480V for HRN-43) and lower level Umin in range 35-99\% Umax. In case any phase passes this range, after a delay which eliminated short voltage peaks, contact breaks. output contact again switches after returning back into monitored voltage range and exceeding fixed hysteresis (which is adjustable in two values by DIP switch).
Phase sequence
monitors correctness of phase sequence. In case of unwanted change output contact breaks. In case of energization of a device with incorrect phase sequence, contact stays open.
Asymmetry
Rate of assymetry between individual phases is set in a range of 5-20\%. In case set asymmetry is exceeded, output relay breaks and LED indicating asymmetry shines. Delays $\mathrm{t} 1, \mathrm{t} 2$ and hysteretic are applicable when returning to normal state.

Current monitoring relay PRI-32

- Current transformer is a part of the product. Inside this transformer there is a wire which senses the volume of flowing current
- This construction decreases temperature when compared with conventional solutions with inbuilt shunt, and increases current range up to 20 Amps , and galvanically separates monitored circuit
- For heating bars in sliding rails, heating cables, indication of current flow, controlling of 1-phase motor consumption ...
- Universal supply AC 24-240 V and DC 24V
- Supply is galvanic separated from measuring current
- Current exceeding - current flowing through monitored wire must not exceed 100 A
- Output contact: 1x changeover/SPDT 8 A
- Clamp terminals
- 1-phase, 1-MODULE, DIN rail mounting

Function

Monitoring relay PRI-32 serves to monitor current level in single phase AC circuits. Due to its fluent adjustment of release current, it is predestined for applications with necessity of current flow indication, and can be used as precedence relay. Output relay is off in normal state. In case the set current level is exceeded, it switches. Multivoltage supply is an advantage.
adra

Current monitoring relay PRI-51

Current monitoring relay PRI-52

- Relay is designated for:
- distant device diagnostic (short circuit, take-off increasing)
- preferred (priority) relay - two appliances (boiler and floor heating) operating on one phase, but never run together - prevention against current overload and circuit breaker tripping. Enables to save your main breaker expenses. - current tranzit indicator - informs about heating activation, ceramic hob, ventilator. ...
- changing over of appliances according to inverter's (converter) output by photocell applications
- NEW - hole for threaded conductor passes through the body of device
- Part of device is current transformer, which is sensing size of current in threaded conductor
- Possible to use also for sensing of current up to 600A from external current transformer
- Slight setting (by potentiometer) of tripping current - range AC 0.525A
- Slight setting (by potentiometer) of delay - adjustable in range 0.5..... 10 s
- Supply voltage AC 230V
- Output contact 1 x changeover /SPDT 8A (AC1)
- 1-phase version, 1-MODULE, mounting onto DIN rail, saddle terminals

PRI-52
Supply
Supply terminals: $\quad A 1-A 2$

Voltage range:
Tolerance of voltage range:
Burden (apparent):
Burden(loss):
Measuring circuit:
Current range:
Maximal permanent current:
Inrush overload <1s:
Current adjustment:
Time delay:
Accuracy:
Setting accuracy (mechanical):
Repeat accuracy:
Temperature dependance:
Limit values tolerance:
Hysteresis:
Output
Number of contacts:
Current rating:
Switching power:
Output indication:
Other information:
Operating temperature:
Storing temperature:
Electrical strengh:
Operating position:
Mounting:
Protection degree:
Overvoltage cathegory:
Pollution level:
Max. cable size $\left(\mathrm{mm}^{2}\right)$:
Dimensions:
Weight:
Standards:

A1-A2
AC $230 \mathrm{~V} / 50-60 \mathrm{~Hz}$
-15%; 10%
max. 5 VA
max. 1.4 W
$\square \square$

AC $0.5 . . .25 \mathrm{~A} / 50 \mathrm{~Hz}$
25 A
100 A
potentiometer
adjustable 0.5 ... 10 s

10%
$<1 \%$
$<0.2 \% /{ }^{\circ} \mathrm{C}$
10%
0.25 A

1x changeover /SPDT (AgNi/Silver Alloy)
8A/AC1
2500 VA / AC1, 240 W / DC red LED
$-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$
$-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
4 kV (supply - output)
any
DIN rail EN 60715
IP40 from front panel / IP10 terminals

$$
2
$$

max. 2×2.5, max. $1 \times 4 /$ with sleeve max. 1×2.5, max. 2×1.5 (AWG 12) $90 \times 17.6 \times 64 \mathrm{~mm}\left(3.5^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5^{\prime \prime}\right)$

$$
64 \mathrm{~g}(2.26 \mathrm{oz} .)
$$

EN 60255-6, EN 61010-1

Symbol
Connection

Connection example: PRI-52 with current transformer for increasing of current range.

Functions

Monitoring relay PRI-52 serves for monitoring of current level in 1-phase AC circuits. Slight setting of release current level designates this relay for many various applications. Output relay is in normal status switched off. When set current level is overrun, relay get closed after preset delay. By return from error to normal status is used hysteresis.
PRI-52 range is possible to increase with external current transformer.
Adventage of PRI-52 is that the hole for threaded conductor is located under the level of covering in the switchboard - thanks that, threaded conductor is not accessible for unwanted manipulation.

- To monitor overloading / discharge (machine, motor...), load sensing, diagnostics of remote device (interrunption, short circuit, current cunsumption increase...)
- Monitors AC/DC 1-phase current in 3 ranges
- Monitoring adjusted current in 2 independent levels
- PRI-41: "HYSTERESIS" function and PRI-42: "WINDOW" function
- function of 2nd relay (independent/parallel):
"MEMORY" function - manual reset.
"RESET" button on the frontal pannel
- Adjustable time delay for each level
- Galvanically separated supply
- Output contact: 1x changeover/ SPDT 16 A / 250 V AC1 for each current level
- 3-MODULE, DIN rail mounting

Relay is delivered in two versions - according to setting and level monitoring .
PRI-41 has function hysteresis, which means that you set only upper level (Imax) and lower level is set in \% from upper level. Therefore when upper level is changed, lower level changes automatically. PRI-42 has function "WINDOW", which means that you set upper level (Imax) and lower level (Imin) individually in \% of rated monitored range.
Both types have selectable function MEMORY. In case the relay gets to faulty state, this function leaves relay in this state until it is reseted by RESET button. DIP switch No. 3 can be used to choose if output relay should switch for each level separatelly, or in parallel in case any current level is exceeded. DIP switch No. 4 serves to set hysteresis which applies when changing from faulty to normal state. Relay is protected against re-poling of $D C$ current, or wrong $A C / D C$ current (this fault is indicated by LED <la LED >| common flashing).

Current transformator SR - for Monitoring current relay PRI

- Accessory to monitoring relay PRI series, for extension of max. controlled current max. cable 35 mm ($1^{\prime \prime}$)
- Max. cable size:
- solid conductor: max. $6 \mathrm{~mm}^{2}$
- wire max. 4 mm 2
- Bus-bar to max. dimension $40 \times 10 \mathrm{~mm}$ ($2^{\prime \prime} \times 0.4^{\prime \prime}$)
- Frenquency: $50-60 \mathrm{~Hz}$
- Constant overload capacity: $1.2 \times \mathrm{In}$
- Output current: 0-5 A
- 1-phase, installable to panel or DIN rail

Technical parameters	SR051	SR101	SR151	SR200	SR250	SR300	SR400	SR600
Max. wire diameter:	¢ 22	$\varnothing 22$	$\varnothing 22$	$\varnothing 23$	$\varnothing 23$	$\varnothing 35$	$\varnothing 35$	$\varnothing 35$
Max. bus-bar profile:	-	-	-	30×10	30×10	40×10	40×10	40×10
Primary current (A):	50	100	150	200	250	300	400	600
	Rated capacity (VA):			Rated capacity (VA):		Rated capacity (VA):		
Accuracy class: $\quad \square$								
0.5	-	2	3	4	6	4	8	12
1	1.25	2.5	4	7	9	8	12	15
3	1.5	3.5	5	8.5	11	12	15	15
Operating temperature:	$-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-4{ }^{\circ} \mathrm{F}\right.$ to $\left.131{ }^{\circ} \mathrm{F}\right)$			$-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.131{ }^{\circ} \mathrm{F}\right)$		$-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.131{ }^{\circ} \mathrm{F}\right)$		
Storage temperature:	$-30^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F} \text { to }+158^{\circ} \mathrm{F}\right)$			$-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.+158^{\circ} \mathrm{F}\right)$		$-30^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F} \text { to }+158^{\circ} \mathrm{F}\right)$		

- Relay monitors phase shift between current and voltage - $\cos -\varphi$ in 3-phase and also 1-phase mains for monitoring overload/unloading of motors
- Supply set $3 \times 400 \mathrm{~V}$
- Function "MEMORY" - manual reset - button on front pannel
- It is possible to connect current transformer in front of the device. This enables increase of current range
- 2 output relays, independent for each level
- Adjustable delay to eliminate short peak overloading
- Adjustable range and bottom level $\cos -\varphi$, of power factor between 0.1- 0.99
- Adjustable delay to eliminate starting of motor
- Selectable hysteresis 5 or 10\%
- Galvanically separated supply AC $230 \mathrm{~V}, \mathrm{AC} 400 \mathrm{~V}$ or $\mathrm{AC} / \mathrm{DC} 24 \mathrm{~V}$
- Output contact: $2 x$ changeover/DPDT 16 A / 250 V AC1
- 3-MODULE, DIN rail mounting

Connection

Function

After the device is switched on, the yellow LED flashes for time t and both relays are switched (state OK). This delay serves to eliminate a faulty state e.g. motor start-up. If the upper limit is exceeded (cos φ - max) red LED shines > $\cos \varphi$. After a time delay t2 the output relay opens (15-18). Equally, if it falls under bottom limit ($\cos \varphi-\min$) red LED shines < $\cos \varphi$ and after a time delay t2 the output relay opens (25-28). In case the load is disconnected (no current), red LED shines $>\cos \varphi(\cos \varphi=1)$.

Level switch HRH-1

HRH-1/230V	8594030337783
HRH-1/24V	8594030338209

- Serves for level monitoring in wells, tanks, pools, reservoirs....
- Options:
- single switch with single-state monitoring
- single switch with double-state monitoring
-2 independent switches with single-state switching
- One-state monitors one liquid level (full or empty), two-state monitors two levels (switches at one level and switches off at another)
- Selectable by DIP switch:
- drain in
- drain away
- combination
- Adjustable time delay when activated by level change, type selectable by DIP switch
- Sensitivity adjustable by potentiometer
- Frequency 50 Hz prevents liquid polarization and increased oxidation of measuring probes
- Supply AC 230 V, AC/DC 24 V or AC 110 V galvanically separated
- Output contact: $2 x$ changeover/DPDT 16 A /250 V AC1

Technical parameters	HRH-1
Function:	4
Supply terminals:	A1-A2

Supply terminals:	
Voltage range:	AC/DC230V, AC/DC24V, AC110V, (galvanicaly separated) (AC50-60Hz)

Burden:

Operating range:
Measuring circuit
Hysteresis (input - opening):
Voltage on electrode:
Current in probes:
Time reaction:
Max. cable capacity:
Time delay tD:
Time delay tH:

Accuracy

Setting accuracy (mech.):
Output
Number of contacts:
Current rating:
Breaking capacity:
Inrush current:
Switching voltage:
Min. breaking capacity DC:
Mechanical life:
Electrical life (AC1):
Other information
Operating temperature:
Storage temperature:
Electrical strength:
Operating position:
Mounting:
Protection degree:
Overvoltage cathegory:
Pollution degree:
Max. cable size $\left(\mathrm{mm}^{2}\right)$:
Dimensions:
Weight:
Standards:
Measuring sensors:

2x changeover/ DPDT (AgNI / Silver Alloy)
16A/AC1
4000 VA / AC1, 384 W / DC
$30 \mathrm{~A} /<3 \mathrm{~s}$
$250 \mathrm{VAC1} / 24 \mathrm{VDC}$
500 mW
3×10^{7}
0.7×10^{5}
$-20 . .+55^{\circ} \mathrm{C}$
$-30 . .+70^{\circ} \mathrm{C}$
4 kV (supply - output)
any
DIN rail EN 60715
IP 40 from front panel / IP 20 terminals
III.

2
solid wire max. 1×2.5 or $2 \times 1.5 /$ with cavern max. 1×1.5

$$
\begin{gathered}
90 \times 52 \times 65 \mathrm{~mm} \\
240 \mathrm{~g}()
\end{gathered}
$$

EN 60255-6, EN 61010-1
see page 122

Measuring probes

Measuring probe can be arbitrary (whatever conductive contact, recommended is using of brass or stainless-steel material).
Conductor doesn't need to be screened, but it is recommened.
In application of screened conductor is this contacted to terminal S (the earth potential).

Funktion description

It is a relay to control levels of conductive liquids (water, chemical solutions, foodstuff. etc.) It means measuring of liquids by measuring probes. AC voltage $5 \mathrm{~V} / 50 \mathrm{~Hz}$ is used as a measuring signal. Using this AC signal prevents increased oxidation of probes and undesirable polarization and electrolysis of liquid. It is possible to control two independent levels or to use a combined function for one level control. It depends on DIP switch setting (see also diagram of functions). Relay is equipped by sensitivity regulation that applies to liquid resistance. When the sensitivity is set according to particular conditions it is possible to eliminate some undesirable switching (e.g. pollution of probes, sediments, humidity etc.) It is also possible to set a delay for each probe in range $0.5-10 \mathrm{~s}$ and by ussing. DIP switch also the type of delay (when the relay is switched on/off, the choice dependson particular application.

Function

Level monitoring in two tanks

Level monitoring in one tank
Input D is inverted when DIP 2 is in position OFF, relay is closed when the container is full. DIP2 $=0$ FF

Examples of use

Monitoring 2 independent containers

Monitoring level with combination of upper and bottom probe

Output relay for pump controlling. Selection of contacts depends on required function.

Note:
$\overline{\text { A tank or metal tube, etc. can be used as a common probe. Due probes that are galvanically separated from supplyvoltage and monitoring voltage up to } 5 \mathrm{~V} \text {, is possible to use standard communication }{ }^{\text {a }} \text {. }}$ cables for connection.

- Relay is designed for monitoring levels in wells, basins, reservoirs, tanks....
- In one device you can choose the following configurations:
- one-level swotch of conductive liquids (by connecting H and D)
- two-level switch of conductive liquids
- One-state device monitors one level, two-state device monitors two levels (switches on one level and switches off on another level)
- Choice of function PUMP UP, PUMP DOWN
- Adjustable time delay on the output (0.5-10s)
- Sensitivity adjustable by a potentiometer (5-100k Ω)
- Measuring frequency 10 Hz prevents polarization of liquid and raising oxidation of measuring probes
- Galvanically separated supply voltage UNI 24.2240 VAC/DC
- Output contact 1xchangeover/SPDT 8A/250V AC1
- In 1-module type, mounting onto a DIN rail

EAN code
HRH-5/UNI 8595188136396

Connection

Function

Relay is designated for monitoring of levels of conductive liquids with possibility of functions: PUMP UP or PUMP DOWN. To prevent polarization and liquid electrolysis of liquid, and undesirable oxidation of measuring probes, alternating current is used. For measuring use three measuring probes: H - upper level, D- lower level, C - common probe. In case you use a tank made of a conductive material, you can use it as probe C . In case you require monitoring of one level only, it is neccessary to connect inputs H and D and connect them to one probe - in this case sensitivity is lowered by half (2.5 ... $50 \mathrm{k} \Omega$). Probe C can be connected with a protective wire of supply system (PE). To prevent undesirable switching out output contacts by various influences (sediment on probes, humidity...) it is possible to set sensitivity of the device according to conductivity of monitored liguid (corresponding to "resistance" of liquid) range 5 up to $100 .$. $\mathrm{k} \Omega$. To reduce infuences of undesirable switching of output contacts by liquid gorgle in tanks, it is possible to set delay of output reaction $0.5-10$ s.

- In an easy way automates operation of pumps depending on level
- Control of level in wells, tanks, reservoirs...
- Delivered as a connected set - easy installation
- Possibility to monitor level of any type of conductive liquid
- Designated for an automatic operation in 1-phased and 3-phased pumps
- Set of level switch HRH-5 and a contactor VS425
- Function choice - pumping up or down
- Unit requires incoming over-current protection
- Protection degree of the set is IP55
- There is a possibility of 4 types of probes in a various design (they are not a part of this set)
- Unit is placed in a plastic box with dimensions $160 \times 135 \times 83$

HRH-4/230V 8595188117517
HRH-4/24V 8595188117500

Technical parameters	HRH-4
Function:	2
Voltage range:	AC/DC 230 V or AC/DC 24 V ($\mathrm{AC} 50-60 \mathrm{~Hz}$)
Burden:	7 VA
Operating range:	-15\%; +10\%
Measuring circuit	
Sensitivity (input resistance):	adjustable in range $5 \mathrm{k} \Omega-100 \mathrm{k} \Omega$
Voltage n electrodes:	max. AC 3.5 V
Current in probes:	$\mathrm{AC}<0.1 \mathrm{~mA}$
Time response:	max. 400 ms
Max. capacity of probe cable:	800 nF (sensitivity $5 \mathrm{k} \Omega$), 100 nF (sensitivity $100 \mathrm{k} \Omega$)
Time delay (t):	adjustable, 0.5-10 sec
Time delay (t 1):	1.5 sec
Accuracy	
Setting accuracy (mech):	$\pm 5 \%$
Output	
Number of contacts:	4 x switching
Rated thermal current:	25 A
Loading in AC3:	$5.5 \mathrm{~kW} / 400 \mathrm{~V}$
Mechanical life:	3×10^{6}
Other information	
Operation temperature:	$-20^{\circ} \mathrm{C}$ to $+55^{\circ}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.131{ }^{\circ} \mathrm{F}\right)$
Storage temperature:	$-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
Electrical strength (supply-output):	4 kV , galvanically insulated
Operating position:	any
Protection degree:	IP 55
Pollution degree:	2
Dimensions:	$160 \times 135 \times 83 \mathrm{~mm}$ ($\left.6.3^{\prime \prime} \times 5.3^{\prime \prime} \times 3.3^{\prime \prime}\right)$
Weight:	834 g (29.4 oz.)
Standards:	EN 60255-6, EN 61010-1

Function

Function PUMP UP

Function PUMP DOWN

Connection

Funktion description

1) PUMP UP - in case the level falls under a lower limit (sensor D), a relay switches and a pump pumps a liquid up until it reaches an upper limit (probe H), then a relay opens and a pump stops pumping. When a level reaches a lower limit again, all process is repeated.
After the device is energized, relay automatically closes and a pump pumps liquid to upper limit.
2) PUMP DOWN - in case a level reaches over an upper limit, a relay closes and a pump pumps liquid down. In case a level reaches a lower limit, a relay opens and a pump stops pumping..
When energized, a relay is in an open state and a pump operates only after an upper limit is exceeded.
3) In case you combine inputs H and D and connect them to one probe, the device will keep only one level (upper and lower limit will become one).
In function PUMP UP relay closes in case the level falls under a probe level. A pump pumps liquid up and in case the level reaches a probe level, a relay opens and a pump stops.
The level is kept in a small range around the probe.
In function PUMP DOWN relays closes in case a level reaches a probe level. A pump pumps down until the level reaches a probe, then relay opens and pump stops.

Level switch HRH-6

EAN"code
HRH-6/AC 8595188136990
HRH-6/DC 8595188137409
HRH-6S 8595188137416

| Technical parameters | HRH-6 / DC | HRH-6 / AC |
| :--- | ---: | :---: | :---: |
| Function: | 2 | |
| Voltage range: | 12.24 V DC | $230 \mathrm{~V} \mathrm{AC/50-60Hz}$ |
| Burden: | max. 1.8 W | max.3.8 VA |
| Supply tolerance: | $+/-20 \%$ | $-20 \% ;+10 \%$ |

Measuring circuit

Sensitivityan adjustable range*:
$\min .10 . . .20 \mathrm{k} \Omega$
$\max .100 \ldots \mathrm{k} . .150 \mathrm{k} \Omega$
$\max .3 \mathrm{VAC}$

Voltage on probes:

Time delay:
Output
Number of contacts:
Current rating:
Switching voltage:
Peak current:
Switching voltage:
Min. switching capacity DC:
Mechanical life (AC1):
Electrical life:
Other information
Operating temperature:
Storage temperature:
El. strength (supply - probes):
Operating position:
Overvoltage cathegory:
Pollution degree:
Dimensions:
Weight:
Standards:
Recommended measuring probe:

* Note: product is in a state of prototype, may be a subject of alternations .

Description of function:

- Function 1 is watching minimal and maximal level depth, for example in fire engine cars, tanks etc.
- Function 2 is maintaining level depth in water collectors, basins, pools ec.
- Selection of particular function is made by jumper on the front panel
- Level depth is indicated on the panel of device by LED...
- Device monitors 5 levels by using six probes (one probe is common
- Common probe can be replaced by a metal (conductive) tank
- Level indicationby six LED's on the front panel of the device
- It is possible to connect another indication module (e.g. in fire-engine cabin)
- Adjustable sensitivity according to liquid conductvity
- Adjustable time delay - elimination of level movement, e.g. while a tank is being filled up
- Measuring frequency 10 Hz to prevent polarization of liquid
- Supply voltage 12.... 24 V DC (to be used in fire-engines) or galvanically separated 230 VAC for general use
- Contact relay 10A for signalization of full/empty tank (according to a chosen function)
- Choice of functions PUMP UP/OFF/PUMP DOWN by a switch located on the front panel of the device
- Protection degree IP65

HRH-6 block connecting

*By HRH-6/DC, incoming supply is connected on terminals + Un and - Un.

Functions

This device monitors level of a conuctive liquid in a tank by using six single probes or one 6-fold probe.In case you use a tank made of a conductive material, it is possible to use it as a common probe C .
This common probe is connected to a pole of supply (for fire-engnes it means its body) in case of supply voltage 12...24VDC.
In case of supply voltage 230VAC, the crcuits are galvanically separated from the main.
The device is controlled by a three-position switch PUMP UP/OFF/ PUMP DOWN. AFter switching into a position PUMP UP or PUMP DOWN, red LED1 shines and then also LED2...LED6 according to liquid level. Output relay has 2 selectable functions.
Funtion setting is done by a jumper on basic board of HRH-6.
Function 1: (for use in fire-engines) - jumper is applied. In case of function PUMP UP and level reaching L5, the relay controlling e.g. acustic signalization, permanently closes and indicated full tank. In case of PUMP DOWN function and level dropunder level L3, relay priodically switches and under L2 it switches permanently (indicates almost empty tank).
Function 2: (for keeping liquid level) - jumper is not applied. In case of PUMP UP, sensor is switched until liquid reaches level L5. Then relay opens and switches again in case the lliguid level falls under level L1. In case of PUMP DOWN - relay is switched until liquid falls under level L1. Then relay opens and switches again on level L5.
To eliminate LED flashing while level gurgle t is possible to delay reaction of probes (set delay $1 . .10 \mathrm{~s}$). According to conductivity of liquid it is possible to set sensitivity of probes (corresponding to "resistance" of liquid).

Level sensors SHR - Level switches accessories

SHR-1-M: brass sensor, SHR-1-N: stainless steel sensor

- sensor to control flooding
- electrode with diametr $4 \mathrm{~mm} / 0.2^{\prime \prime}$ is placed in plastic cover
- with $12 \mathrm{~mm} / 0.5^{\prime \prime}$ screw with nut
- panel or to holder mounting
- conductor is connected to terminal board, shrink bushing for feeder place insulation is a part of device
- max. wire profile: $2.5 \mathrm{~mm}^{2}$ (AWG10)
- installation: after connecting a wire to the sensor, run the
- shrink bushing over the wire onto the sensor. Heat the
- sensor and by shrinking the connection of sensor and wire
- will be hermetical
- weight: 9.7 g (0.3 oz.$)$
- operating temperature: $-25^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$
- total sensor lenght: $65.5 \mathrm{~mm} / 2.58$ "
- detection sensor is electrode, which in connection with switchable device is used for level detection for example in wells,tanks,...
- to be ued in electric conductive fluids and mechanically polluted fluids with temperature: $+1^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}\left(33.8^{\circ} \mathrm{F}\right.$ to $\left.176^{\circ} \mathrm{F}\right)$ stainless steel one-pole electrode reside in PVC cover, intended for tank wall mounting or mounting by socket
- to ensure corret function of the sensor, it is necessary to have the electrode without dirt which could disable the connection of the electrode and fluid and thus lead to malfunction
- max. wire profile: $2.5 \mathrm{~mm}^{2}$ (AWG10)
- recomended wire ÖLFLON FEP 1x1.0 BK
- installation:
- conductor wire is connected by feazing of two brass screws to stainless steel electrode
- conductor is caulked by bushing Pg7 with protection degree IP68
weight: $48.6 \mathrm{~g} / 1.7 \mathrm{oz}$.
dimensions: max. diameter $21 \mathrm{~mm} / 0.8^{\prime \prime}$, lenght $96 \mathrm{~mm} / 3.8^{\prime \prime}$

SHR-2 in open state

SHR-3

stainless probe to be used into demanding industrial environments, designated for screwing into tank wall or cover

- the probe is installed in horisontal, vertical or in sidelong position on tank side or in tank cover. Installation is done by soldering or by fixing nut. It is necessary to use $24 \mathrm{~mm}\left(1^{\prime \prime}\right)$ screw. It is necessary to use an adequate torque with regards to a seal and operational overpressure in a tank
sensor has connecting wire - lenght 3 m , which is connected to sensor to scan electrode and sensor bushing
- connecting wire is double-wire PVC AWG $18\left(0.75 \mathrm{~mm}^{2}\right)$, connection of wires: brown-scan electrode, blue-sensor bushing connection M18x1.5 screw
- protection degree IP 67
- sensor weight without cable: 100 g (3.3 oz .)
- operating surroundings: place without the danger of detonation, temperature on screw: max. $95^{\circ} \mathrm{C} / 203^{\circ} \mathrm{F}$
- pressure immunity: on $25^{\circ} \mathrm{C} / 77^{\circ} \mathrm{F} 4 \mathrm{MPa}$, on $95^{\circ} \mathrm{C} / 203^{\circ} \mathrm{F} 1.5 \mathrm{MPa}$
- weight: 239 g (8.4 oz.)
- material: bushing and sean electrode: stainless steel W.Nr. 1.4301, insulation insert of electrode: PTFE
- internal material: self - extinguishing epoxide resin
operating temperature: $-25^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$
total sensor lenght: $65.5 \mathrm{~mm} / 2.58$ "

ANALOGUE

- Single thermostats with special temperature range, function or use.

THERMO

- Room thermostats in design ELEGANT.
- Monitoring and regulation of temperature in room, floor, or both.

TEV

- Thermostat for demanding environment with protection degree IP65.
- Protection against water-shoot, pavement, drives... freezing.

Thermostats and hygrostats

DIGITAL

- Complex control of heating and water warming in a house; solar heating.
- Maximally universal and variablethermostat with possibility of various functions and combination with time switch

Analog

Thermostats

TER

single thermostats

TER-3H $-15^{\circ} \mathrm{C}$ to $0^{+45^{\circ} \mathrm{C}}$ (5° F to 113°) external NTC.

TER-3E $0^{\circ} \mathrm{C}$ to $0^{+} 60^{\circ} \mathrm{C}$ $32^{\circ} \mathrm{F}$ to $140^{\circ} \mathrm{F}$) external NTC.

TER-3F $0^{\circ} \mathrm{C}$ to $0^{+} 60^{\circ} \mathrm{C}$ ($32^{\circ} \mathrm{F}$ to $140^{\circ} \mathrm{F}$) in-built NTC.

TER-3G
$0^{\circ} \mathrm{C}$ to ${ }^{+} 60^{\circ} \mathrm{C}$ ($32^{\circ} \mathrm{F}$ to $140^{\circ} \mathrm{F}$) external PT100

TER-7
Monitoring heating of motor winding in range given by resistance of in-built PTC thermistor($1.8-3.3 \mathrm{kN}$), additional function (memory, reset), output contact 2xaA clangeover/ ${ }^{\text {se2 }}$

Thermo

ATC
Combined thermostat
with room and floor sensor,
temperature range
+5 to $+50^{\circ} \mathrm{C}$
$\left(+41^{\circ} \mathrm{F}\right.$ to $+122^{\circ} \mathrm{F}$).

TEV

Digital

TEV-4
single exteriors thermostat for monitoring and regulation of emperature in demanding enviroments (humid and contaminated, agressive and defective, industrial workshops, washing rooms, green-houses, cellars and cooling boxes...) Temperature range $-30^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C} /$ $-30^{\circ} \mathrm{C}$ to $140^{\circ} \mathrm{F}$

RHT-1
Hygro-thermostat for temperature monitoring and regulation in range 0 to $+60^{\circ}\left(32^{\circ} \mathrm{F}\right.$ to $140^{\circ} \mathrm{F}$) and relative humidity monitoring and regulation in range 50... 90%
TER $\sqrt{2 \mathrm{C}} \sqrt{2+2}$

TER-9 Digital multifunction thermostat 2 temperature inputs, 2 outputs 8 A changeover/ SPDT, 6 functions, in-built time switch clock, LCD with back light, galvanically sep.supply voltage AC $230 \mathrm{~V}, 2$ MODUL Temperature range: $-40^{\circ} \mathrm{C}$ to $+110^{\circ} \mathrm{C} /-40^{\circ} \mathrm{C}$ to $230^{\circ} \mathrm{F}$

Hygro-thermostat

RHV-1
Hygro-thermostat for humidity monitoring
and regulation in range $0 . .90 \% \mathrm{RH}$

Thermo

DTC
Digital combined thermostat with room and floor sensor with temperature range +5 to $+50^{\circ} \mathrm{C}$
$\left(+41^{\circ} \mathrm{F}\right.$ to $\left.+122^{\circ} \mathrm{F}\right)$,
pre-programmed programs

Accessories to thermostats:

TC, TZ , PT-100

- externa temperature sensors for thermostats in lengths $3 \mathrm{~m}, 6 \mathrm{~m}, 12 \mathrm{~m}$ -TC/TZ: thermistor NTC $12 \mathrm{kN} / 25^{\circ} \mathrm{C}$ PT: element PT-100 (only TER-3G)

LKM-45
Wiring box for thermostat mounting
on a surface.

Thermostats

		Type		Sensor			Supply								
$\stackrel{\circlearrowright 口}{\beth}$	$\begin{aligned} & \text { Z } \\ & \text { Nun } \end{aligned}$	克	歌	彦		$\stackrel{\sim}{2}$	خ	̇	خ						
TER－3A	1M－DIN	\bigcirc			\bullet	NTC			－		$\begin{aligned} & -30^{\circ} \mathrm{C} \text { to }+10^{\circ} \mathrm{C} \\ & \left(-22^{\circ} \mathrm{F} \text { to } 50^{\circ} \mathrm{F}\right) \end{aligned}$	$\begin{gathered} 0.5-5^{\circ} \mathrm{C} \\ \left(32.9^{\circ} \mathrm{F} \text { to } 41^{\circ} \mathrm{F}\right) \end{gathered}$		single thermostat into a switchboard with external sensor for temperature in cooling and against freezing	127
TER－3B	1M－DIN	－			\bigcirc	NTC			－		$\begin{gathered} 0^{\circ} \mathrm{C} \text { to }+40^{\circ} \mathrm{C} \\ \left(32^{\circ} \mathrm{F} \text { to } 104^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} 0.5-5^{\circ} \mathrm{C} \\ \left(32.9^{\circ} \mathrm{F} \text { to } 41^{\circ} \mathrm{F}\right) \end{gathered}$		single thermostat into a switchboards with external sensor for sensing room and operational temperature	127
TER－3C	1M－DIN	\bigcirc			－	NTC			\bigcirc		$\begin{aligned} & +30^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & \left(86^{\circ} \mathrm{F} \text { to } 158^{\circ} \mathrm{F}\right) \end{aligned}$	$\begin{gathered} 0.5-5^{\circ} \mathrm{C} \\ \left(32.9^{\circ} \mathrm{F} \text { to } 41^{\circ} \mathrm{F}\right) \end{gathered}$		single thermostat into a switchboards with external sensor for sensing temperature in devices（ overheating．．．）	127
TER－3D	1M－DIN	\bigcirc			\bullet	NTC			－		$0^{\circ} \mathrm{C} \text { to }+60^{\circ} \mathrm{C}$ （ $32^{\circ} \mathrm{F}$ to $140^{\circ} \mathrm{F}$ ）	$\begin{gathered} 0.5-5^{\circ} \mathrm{C} \\ \left(32.9^{\circ} \mathrm{F} \text { to } 41^{\circ} \mathrm{F}\right) \end{gathered}$		single thermostat into a switchboard with external sensor for sensing operational temperature of machines and devices	127
TER－3E	1M－DIN	\bullet			\bigcirc	NTC			－		$0^{\circ} \mathrm{C} \text { to }+60^{\circ} \mathrm{C}$ （ $32^{\circ} \mathrm{F}$ to $140^{\circ} \mathrm{F}$ ）	$1^{\circ} \mathrm{C}\left(34^{\circ} \mathrm{F}\right)$		as TER－3D but with fixed hysteresis	128
TER－3F	1M－DIN	\bigcirc		\bullet		NTC			－		$\begin{aligned} & -15^{\circ} \mathrm{C} \text { to }+45^{\circ} \mathrm{C} \\ & \left(5^{\circ} \mathrm{F} \text { to } 113^{\circ} \mathrm{F}\right) \end{aligned}$	$1^{\circ} \mathrm{C} / 34^{\circ} \mathrm{F}$		single thermostat into a switchboard with in－built sensor， monitors operational temperature in a switchboard	128
TER－3G	1M－DIN	－			\bullet	PT100			－		$\begin{gathered} 0^{\circ} \mathrm{C} \text { to }+60^{\circ} \mathrm{C} \\ \left(32^{\circ} \mathrm{F} \text { o } 140^{\circ} \mathrm{F}\right) \end{gathered}$	$0.5-5^{\circ} \mathrm{C}$ （ $32.9^{\circ} \mathrm{F}$ to $41^{\circ} \mathrm{F}$ ）		as TER－3D but with input for sensor PT100	127
TER－3H	1M－DIN	\bullet			－	NTC			－		$\begin{aligned} & -15^{\circ} \mathrm{C} \text { to }+45^{\circ} \mathrm{C} \\ & \left(5^{\circ} \mathrm{F} \text { to } 113^{\circ} \mathrm{F}\right) \end{aligned}$	$0.5-5^{\circ} \mathrm{C}$ （32．9 ${ }^{\circ} \mathrm{F}$ to $41^{\circ} \mathrm{F}$ ）		as TER－3A but with a different temperature range－for cooling and heating	127
TER－4	3M－DIN	\bigcirc			－（2x）	NTC	\bigcirc	－		－	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+110^{\circ} \mathrm{C} \\ & \left(-40^{\circ} \mathrm{F} \text { to } 230^{\circ} \mathrm{F}\right) \end{aligned}$	$\begin{gathered} 0.5-2.5^{\circ} \mathrm{C} \\ \left(32.9^{\circ} \mathrm{F} \text { to } 37^{\circ} \mathrm{F}\right) \end{gathered}$		two－state thermostat（2 inputs， 2 outputs），two independent or dependent thermostats，accurate setting，wide temperature range	129
TER－7	1M－DIN	\bigcirc			－	PTC			－		X	Resistance $1.8-3.3 \mathrm{k} \Omega$		thermistor relay for protection of motor overheating，input designated for sensor PTC in－built in motor winding	132
TER－9	2M－DIN		－		－（2x）	NTC	－	－		－	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+110^{\circ} \mathrm{C} \\ & \left(-40^{\circ} \mathrm{F} \text { to } 230^{\circ} \mathrm{F}\right) \end{aligned}$	$\begin{gathered} 0.5-5^{\circ} \mathrm{C} \\ \left(32.9^{\circ} \mathrm{F} \text { to } 41^{\circ} \mathrm{F}\right) \end{gathered}$		multifunction（ 6thermo functions）digital thermostat with in－built time switch clock， 2 inputs／2 outputs	130
TEV－1	IP65 box	\bigcirc			\bigcirc	INTC	－				$\begin{gathered} -20 \mathrm{to}+20^{\circ} \mathrm{C} \\ \left(-4^{\circ} \mathrm{F} \text { to }+68^{\circ} \mathrm{F}\right) \end{gathered}$	$1.5{ }^{\circ}\left(35^{\circ} \mathrm{F}\right)$		thermostat with＂dead zone＂，control of heating and protection against freezing，box for outdoor use with IP65	135
TEV－2	IP65 box	－			\bullet	NTC	－				$\begin{gathered} -20 \text { to }+20^{\circ} \mathrm{C} \\ \left(-4^{\circ} \mathrm{F} \text { to }+68^{\circ} \mathrm{F}\right) \end{gathered}$	$1.5^{\circ} \mathrm{C}\left(35^{\circ} \mathrm{F}\right)$		single thermostat for regulation of heating，short sensor is a part of this device，protection degree IP65	136
TEV－3	IP65 box	－			\bullet	NTC	－				$+5 \text { to }+35^{\circ} \mathrm{C}$ （ $41^{\circ} \mathrm{F}$ to $149^{\circ} \mathrm{F}$ ）	$1.5{ }^{\circ} \mathrm{C}\left(35^{\circ} \mathrm{F}\right)$		as TEV－2 but potentiometer and indication are placed on front panel	136
TEV－4	IP65 box				－	NTC	\bullet				$\begin{aligned} & -30^{\circ} \mathrm{C} \text { to }+65^{\circ} \mathrm{C} \\ & \left(-22^{\circ} \mathrm{F} \text { to } 149^{\circ} \mathrm{F}\right) \end{aligned}$	$\begin{gathered} 0.5 / 1.5 / 4^{\circ} \mathrm{C} \\ 32.9 / 35 / 39^{\circ} \mathrm{F} \end{gathered}$		single exteriors thermostat for monitoring and regulation of temperature in demanding enviroments	137
ATR	ELEGANT	－		－		NTC	－				$\begin{gathered} +5 \text { to }+40^{\circ} \mathrm{C} \\ \left(+41^{\circ} \mathrm{Fto}+104^{\circ} \mathrm{F}\right) \end{gathered}$	$1^{\circ} \mathrm{C}\left(34^{\circ} \mathrm{F}\right)$		room analog thermostat line THERMO for mounting into a wiring box	133
ATF	ELEGANT	－			\bullet	NTC	\bigcirc				$\begin{gathered} +5 \mathrm{to}+50^{\circ} \mathrm{C} \\ \left(+41^{\circ} \mathrm{Fto}+122^{\circ} \mathrm{F}\right) \end{gathered}$	$1^{\circ} \mathrm{C}\left(34^{\circ} \mathrm{F}\right)$		floor analog thermostat line THERMO for mounting into a wiring box	133
ATC	ELEGANT	\bigcirc		－	\bigcirc	NTC	\bigcirc				$\begin{gathered} +5 \mathrm{t} 0+50^{\circ} \mathrm{C} \\ \left(+41^{\circ} \mathrm{Fto}+122^{\circ} \mathrm{F}\right) \end{gathered}$	$1^{\circ} \mathrm{C}\left(34^{\circ} \mathrm{F}\right)$		room and floor（combined）analog thermostat line THERMO for mounting into a wiring box	133
DTR	ELEGANT		－	－		NTC	－				$\begin{gathered} +5 \text { to } 0+50^{\circ} \mathrm{C} \\ \left(+41^{\circ} \mathrm{Ft} 0+122^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} 0.5-1^{\circ} \mathrm{C} \\ \left(32.9^{\circ} \mathrm{F} \text { to } 34^{\circ} \mathrm{F}\right) \end{gathered}$		room digital thermostat line THERMO for mounting into a wiring box	134
DTF	ELEGANT		\bigcirc		\bullet	NTC	\bigcirc				$\begin{gathered} +5 \mathrm{to}+50^{\circ} \mathrm{C} \\ \left(+41^{\circ} \mathrm{Fto}+122^{\circ} \mathrm{F}\right) \\ \hline \end{gathered}$	$\begin{gathered} 0.5-1^{\circ} \mathrm{C} \\ \left(32.9^{\circ} \mathrm{F} \text { to } 34^{\circ} \mathrm{F}\right) \\ \hline \end{gathered}$		floor digital thermostat line THERMO for mounting into a wiring box	134
DTC	ELEGANT		\bigcirc	－	\bigcirc	NTC	\bigcirc				$\begin{gathered} +5 \mathrm{t} 0+50^{\circ} \mathrm{C} \\ \left(+41^{\circ} \mathrm{Ft} 0+122^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} 0.5-1^{\circ} \mathrm{C} \\ \left(32.9^{\circ} \mathrm{F} \text { to } 34^{\circ} \mathrm{F}\right) \end{gathered}$		room and floor（ combined）digital thermostat line THERMO for mounting into a wiring box	134
RHT－1	1M－DIN	－		\bullet		built－in			－		$\begin{gathered} 0 \text { to }+60^{\circ} \mathrm{C} \\ \left(32^{\circ} \mathrm{F} \text { to } 140^{\circ} \mathrm{F}\right) \end{gathered}$		$\begin{gathered} \mathrm{H}-4 \% \\ \mathrm{~T}-2.5^{\circ} \mathrm{C}\left(36.5^{\circ} \mathrm{F}\right) \end{gathered}$	hygro－thermostat for temperature monitoring and regulation in range $0^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}\left(32{ }^{\circ} \mathrm{F}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$	138
RHV－1	IP65	－		－		built－in					$\begin{aligned} & -30^{\circ} \mathrm{C} \text { to }+60^{\circ} \mathrm{C} \\ & \left(-22^{\circ} \mathrm{F} \text { to } 140^{\circ} \mathrm{F}\right) \end{aligned}$	2\％，3\％，4\％	$\begin{aligned} & 0 \ldots . .30 \% \text { RH } \\ & 30 \ldots 60 \% \text { RH } \\ & 60 \ldots 90 \% \text { RH } \end{aligned}$	single exteriors hygrostat for monitoring and regulation of humidity in the and demanding enviroments	139

Thermostats line TER-3 (\mathbf{E}, \mathbf{F})

- Single thermostat for temperature monitoring and regulation in range 0 to $+60^{\circ} \mathrm{C} /\left(32^{\circ} \mathrm{F}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$
- Can be used for temperature monitoring e.g. in switchboards, heating systems, iquids, radiators, motors, devices, open spaces, etc
- Fixed hysteresis at $1^{\circ} \mathrm{C} / 32^{\circ} \mathrm{F}$
- TER-3E - choice of external thermo sensors with double insulation in standard lengths 3,6 and 12 m ($9.8^{\prime}, 19.7^{\prime}$ and 29.5^{\prime})
- TER-3F - sensor is a part of device, serves for monitoring temperature in a switchboard
- Supply voltage AC/DC 24-240 V
- Output contact 1x NO- SPST 16 A / 250 V AC1
- Output state is indicated by red LED
- 1-MODULE, DIN rail mounting

Technical parameters:	TER-3E TER-3F
Function:	single level
Supply terminals:	A1-A2
Voltage range:	AC/DC $24-240 \mathrm{~V}(\mathrm{AC} 50-60 \mathrm{~Hz})$
Burden:	2VA
Operating range:	-15\%; +10\%
Measuring circuit	
Measuring terminals:	T1-T1
Temperature range:	0 to $+60^{\circ} \mathrm{C} /\left(32^{\circ} \mathrm{F}\right.$ to $\left.140{ }^{\circ} \mathrm{F}\right)$
Hysteresis:	fixed $1^{\circ} \mathrm{C} / 34^{\circ} \mathrm{F}$
Sensor:	thermistor NTC in-built
Sensor fault indic. (short-circuit/ disconnection):	flashing red LED
Accuracy	
Setting accuracy (mech.):	5\%
Switching difference:	$0.5{ }^{\circ} \mathrm{C}$
Temperature dependance:	$<0.1 \% /{ }^{\circ} \mathrm{C}$

Output

Number of contacts:	$1 \times \mathrm{NO}-\mathrm{SPST}\left(\mathrm{AgSnO}_{2}\right)$
Current rating:	$16 \mathrm{~A} / \mathrm{AC1}, 10 \mathrm{~A} / 24 \mathrm{VDC}$
Breaking capacity:	$4000 \mathrm{VA} / \mathrm{AC1}, 300 \mathrm{~W} / \mathrm{DC}$
Switching voltage:	$250 \mathrm{~V} \mathrm{AC1/24V} \mathrm{DC}$
Min. breaking capacity DC:	500 mW
Output indication:	red LED
Mechanical life:	3×10^{7}
Electrical life (AC1):	0.7×10^{5}
Other information	

Operating temperature:
$-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$
Storage temperature:
$-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
Electrical strength:
2.5 kV (supply - output)

Operating position:
Mounting:
Protection degree:
Overvoltage cathegory:
Pollution degree:
Max. cable size $\left(\mathrm{mm}^{2}\right)$:

Dimensions:
Weight:
Standards:
any
DIN rail EN 60715
IP 40 from front panel / IP 10 terminals
III.
solid wire max. 2×2.5 or 1×4 AWG 12
with sleeve max. 1×2.5 or 2×1.5
$90 \times 17.6 \times 64 \mathrm{~mm}\left(3.5^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5^{\prime \prime}\right)$
$73 \mathrm{~g}(2.58 \mathrm{oz}) \quad .74 \mathrm{~g}(2.61 \mathrm{oz}$.
EN 60730-2-9, EN 61010-1

Example of an order

Please specify a type of thermostat in your order (TER-3E, TER-3F).

Function

TER-3E, TER-3F

Function description

It is a single thermostat for temperature monitoring with separated sensor (except for TER-3F). Device is located in a switchboard and external sensor senses temperature of required space, object or liquid. Supply is not galvanically separated from sensor but sensor is double insulated. Maximal length of sensor cable is 12 $\mathrm{m}\left(29.5^{\prime}\right)$. Temperature sensing is decreased by set hysteresis. When installing it is necessary to keep in mind that hysteresis is increased by temperature gradient between sensor's jacket and thermistor.

TER-4/230V: 8594030337806

Technical parameters:	TER-4
Function:	double thermostat
Supply terminals:	A1-A2
Voltage range:	AC230V(AC50-60 Hz) gavanically separated, AC/DC24V galvanically unseparated
Burden:	max. 4.5 VA
Supply voltage tolerance:	-15\%; + 10%
Measuring circuit	
Measuring terminals:	T1-T1 a T2-T2
Temperatue ranges: (set via switch individually for each level)	-40 to $-25^{\circ} \mathrm{C} /-40$ to $77^{\circ} \mathrm{F}$ +35 to $+50^{\circ} \mathrm{C} / 95$ to $122^{\circ} \mathrm{F}$ -25 to $-10^{\circ} / 777$ to $50^{\circ} \mathrm{F}$ +50 to $+65^{\circ} \mathrm{C} / 122$ to $149^{\circ} \mathrm{F}$ -10 to $+5^{\circ} \mathrm{C} / 50$ to $41^{\circ} \mathrm{F}$ +65 to $+80^{\circ} \mathrm{C} / 149$ to $176^{\circ} \mathrm{F}$ +5 to $+20^{\circ} \mathrm{C} / 41$ to $70^{\circ} \mathrm{F}$ +80 to $+95^{\circ} \mathrm{C} / 176$ to $203^{\circ} \mathrm{F}$ +20 to $+35^{\circ} \mathrm{C} / 70$ to $95^{\circ} \mathrm{F}$ +95 to $+110^{\circ} \mathrm{C} / 203$ to $233^{\circ} \mathrm{F}$

Fine temperature setting: Hysteresis for T 1 : Hysteresis for T2:
Sensor:
Sensor failure indication:
Accuracy
Setting accuracy (mech.):

Temperature dependance:
Output
Number of contacts:
Current rating:
Breaking capacity:
Inrush current:
Switching voltage:
Min. breaking capacity $D C$:
Output indication:
Mechanical life:
Electrical life (AC1):
Other information
Operating temperature:
Storage temperature:
Electrical strength:
Operating position:
Mounting:
Protection degree:
Overvoltage cathegory:
Pollution degree:
Max. cable size $\left(\mathrm{mm}^{2}\right)$:
Dimensions:
Weight:
Standards:
$0-15^{\circ} \mathrm{C}$, in selected range
adjustable, 0.5 or $2.5^{\circ} \mathrm{C} / 32.9$ or $37^{\circ} \mathrm{C}$ (DIP switch) adjustable, 0.5 or $2.5^{\circ} \mathrm{C} / 32.9$ or $37^{\circ} \mathrm{C}$ (DIP switch) termistor NTC $12 \mathrm{k} \Omega / 25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$ yellow LED
$0.5^{\circ} \mathrm{C} / 32.9^{\circ} \mathrm{F}$
$<0.1 \% /{ }^{\circ} \mathrm{C}\left(<0.1 \% /{ }^{\circ} \mathrm{F}\right)$
$2 x$ changeover/ DPDT (AgNI / Silver Alloy)16A / AC1
4000 VA / AC1, 384 W / DC
$30 \mathrm{~A} /<3 \mathrm{~s}$
$250 \mathrm{VAC1} / 24 \mathrm{VDC}$
500 mW
red LED
3×10^{7}
0.7×10^{5}
$-20 . .+55^{\circ} \mathrm{C}$
$-30 . .+70^{\circ} \mathrm{C}$
4 kV (supply - output)
4 kV (supply - output)
any
DIN rail EN 60715
IP 40 from front panel /IP 20 terminals
III.
2
solid wire max. 1×2.5 or $2 \times 1.5 /$ with sleeve max. 1×1.5 (AWG 12)
$90 \times 52 \times 65 \mathrm{~mm}\left(3.5^{\prime \prime} \times 22^{\prime \prime} \times 2.6^{\prime \prime}\right)$
$238 \mathrm{~g}(8.4$ oz. $)$
EN $60730-2-9$, EN $61010-1$

- Two-state thermostat for temperature monitoring and regulation in a wide range $-40^{\circ} \mathrm{C}$ to $+110^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.230^{\circ} \mathrm{F}\right)$ with a switch for temperature ranges shift and fine temperature setting (high accuracy of setting)
- Can be used for temperature monitoring in e.g. switchboards, heating systems, cooling systems, open spaces, objects, liquids, radiators, etc.
- 2 thermo inputs for sensor NTC $12 \mathrm{k} \Omega / 25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$
- Possibility to choose if both thermostats should work independently or dependently (by DIP switch)
- Function of short-circuit or sensor disconnection monitoring
- Possibility to set functions "heating " /"cooling " (setting is done by DIP switch)
- Adjustable hysteresis (sensitivity) of switching 0.5 or $2.5^{\circ} \mathrm{C}\left(32.9\right.$ or $\left.37^{\circ} \mathrm{F}\right)$ (DIP switch)
- Choice of external thermo sensors with double insulation in standard lengths 3,6 and 12 m ($9.8^{\prime}, 19.7^{\prime}$ and 29.5^{\prime})
- It is possible to place the sensor directly on terminal block - to monitor temperature in a switchboard or in its surroundings
- Galvanically separated supply AC 230 V or AC/DC 24 V galvanically unseparated
- 2 independent output with changeover contacts/SPDT $16 \mathrm{~A} / 250 \mathrm{~V}$ AC1
- Output states are indicated by red LED, faulty state of sensor by yellow LED
- 3-MODULE, DIN rail mounting

Description
Function: dependent /independent
Supply voltage indication
Output contact-relay 1
Sensor failure
Output contact-relay 2
Adjusting temperature range
(inverts output)

Function

Independent function

Dependent function

Blocking function:
When DIP switch 4 is in position 0 N , condition for thermostat switching is switching output 15-18 at both individual thermostats (series function). Thus it is possible to use e.g. first thermostat as operational and the other as an emergency one.
Output 25-28 functions normally , according to T2.

This device includes 2 thermostats in one . Thermostat has 2 thermo inputs, 2 outputs and individual temperature setting. It offers two possibilities of use. Firstly it can be used as two individual thermostats (e.g. for monitoring two temperature levels of one device or as a control of individual devices), secondly it is possible to set depending function of both thermostats, when thermostat 2 blocks thermostat No. 1 Advantage of this thermostats is a wide temperature range - $40 . .+110^{\circ} \mathrm{C}$ (in one device) with very good mechanical accuracy of setting. It is due to 10 -state switch for thermo ranges and its scale by $15^{\circ} \mathrm{C}\left(59^{\circ} \mathrm{F}\right)$. VIt is possible to use fine tuning by potentiometer by $0-15^{\circ} \mathrm{C}\left(32-59^{\circ} \mathrm{F}\right)$ with accuracy $\pm 1^{\circ} \mathrm{C} / 34^{\circ} \mathrm{F}$. Device has in-built control of sensor fault (yellow LED). It is possible to set hysteresis 0.5 or $2.5^{\circ} \mathrm{C}\left(32.9\right.$ or $\left.37^{\circ} \mathrm{F}\right)$.
It is possible to operate the thermostat only with one sensor. In that case it is necessary to connect a resistor $10 \mathrm{k} \Omega$ to the other input. This is a part of delivery.

Multifunction digital thermostat TER-9

- Digital thermostat with 6 functions and in-built time switch clock, with daily and weekly program (as SHT-1/2). Thermo
- Complex control of heating and water heating in a house, solar heating....
- 2 thermostats in one, 2 temperature inputs, 2 output contact closures
- Universal and variable thermostat containing all common thermostatic functions
- Functions: two independent thermostats, $1 x$ dependent, diff erential thermostat, 2 -stage thermostat, thermostat with
- Program setting of output function, calibration of sensors according to reference temperature (off set)
- User friendly display of set and measured data, illuminated LCD by backlight
- Supply galvanically separated $A C 230 \mathrm{~V}$ or $\mathrm{AC} / \mathrm{DC} 24 \mathrm{~V}$ galvanically unseparated
- Output contact $1 x$ changeover/SPDT 8 A / 250 V AC1 for each output

Supply

Number of function:
Supply terminals:

Voltage range:

Burden:

Operating range:
Measuring circuit
Measuring terminals:
Temperature range:
Hysteresis (sensitivity):
Diference temperature:
Sensor:
Sensor failure indication:
Accuracy
Measuring accuracy:
Repeat accuracy:
Temperature dependance:

Output

Number of contacts:
Current rating:
Max. breaking capacity::
Switching voltage:
Min. breaking capacity DC:
Output indication:
Mechanical life:
Electrical life (AC1):
Other information
Operating temperature:
Storage temperature:
Electrical strength:
Operating position:
Mounting:
Protection degree:
Overvoltage cathegory:
Pollution degree:
Max. cable size $\left(\mathrm{mm}^{2}\right)$:
Dimensions:
Weight:
Standards:
functions can be managed also in real time dead zone, heating functions

- Short circuit and monitor disconnect function
- Digital switch clock overrides thermostat
- Memory for the most often used temperatures
- Zero error when value setting
- 2-MODULE, DIN rail mounting

TER-9

TER-9
6
A1-A2
AC $230 \mathrm{~V}(\mathrm{AC} 50-60 \mathrm{~Hz})$ galvanically separated, AC/DC 24V galvanically unseparated
max. 3.5 VA
-15\%; +10\%
T1-T1 and T2-T2
$-40^{\circ} \mathrm{C}$ to $+110^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.230^{\circ} \mathrm{F}\right)$
$<0.5^{\circ} \mathrm{C}\left(<32.9^{\circ} \mathrm{F}\right)$
$<0.1 \% /{ }^{\circ} \mathrm{C}\left(<0.1 \% /{ }^{\circ} \mathrm{F}\right)$
termistor NTC $12 \mathrm{k} \Omega$ at $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$
sign "Err"
5\%
$<0.5{ }^{\circ} \mathrm{C} / 0.5{ }^{\circ} \mathrm{F}$
$<0.1 \% /{ }^{\circ} \mathrm{C}$
1x changeover for each input/SPDT, (AgNi/ Silver Alloy)
8A/AC1
2500 VA / AC1, 240 W / DC
$250 \mathrm{VAC1} / 24 \mathrm{VDC}$
500 mW
symbol 0N/OFF
1×10^{7}
1×10^{5}
$-20^{\circ} \mathrm{C}$ to $+55^{\circ}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.131{ }^{\circ} \mathrm{F}\right)$
$-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
4 kV (supply - contact)
any
DIN rail EN 60715
IP 40 from front panel /IP 20 terminals
III.
2
solid wire max. 1×2.5 or $2 \times 1.5 /$ with sleeve max. 1×2.5 (AWG 12)
$90 \times 35.6 \times 64 \mathrm{~mm}$ (3.5 " $\left.\times 1.44^{\prime \prime} \times 2.5{ }^{\prime \prime}\right)$
140 g (4.9 oz.)
EN 61812-1, EN 61010-1, EN 60730-2-9

Description

Note: The device is possible to operate with one sensor.In such case it is necessary to connect resistor10k Ω. This resistor is a part of delivery.

2 independent single-stage thermostat

Legend:
Ts1- real (measured) temperature 1
Ts2 - real (measured) temperature 2
T1- adjusted temperature T1
T2 - adjusted temperature T2
H1-adjusted hysteresis for T 1
H2 - adjusted hysteresis for T2
dy1 - set switching delay of the output
dy2 - set delay on output breaking
15-18 output contact (for T1)
25-28 output contact (for T2)

Dependent functions of 2 thermostats

Legend:

Ts1 - real (measured) temperature 1
Ts2 - real (measured) temperature 2
T1- adjusted temperature T1
T2 - adjusted temperature T2
H1 - adjusted hysteresis for T1
H2-adjusted hysteresis for T2
dy1- set switching delay of the output
dy2 - set delay on output breaking
25-28 output contact (for T2)
15-18 output contact (intersection T1 and T2)
Output contact switched until adjusted temperature is reached. Hysteresis eliminates frequent switching.
Heating/cooling function adjusted in the menu.

Output 15-18 is closed, if temperature of both thermostats is bellow an adjusted level. When any thermostat reaches adjusted level, the contact 15-18 opens.
Serial inner connection of thermostats (logic function AND).

Differential thermostat

Legend:
Ts1 - real (measured) temperature T1
Ts2 - real (measured) temperature T2
D-adjusted difference
dy1- set switching delay of the output
dy2 - set delay on output breaking
15-18 output contact (for T1)
$25-28$ output contact (for T2)

2-stage thermostat

Legend:
Ts - real (measured) temperature
T1 - adjusted temperature
D- adjusted difference
H1-adjusted hysteresis for T1
H2-T=T1-D
dy1- set switching delay of the output
dy 2 - set delay on output breaking
15-18 output contact
25-28 output contact

Thermostat with "WINDOW"

Legend:
Ts - real (measured) temperature
T1-adjusted temperature
T2 - adjusted temperature $\mathrm{T}=\mathrm{T} 1-\mathrm{D}$
H1 - adjusted hysteresis for T1
H2 - adjusted hysteresis for T2 dy1- set switching delay of the output
dy2 - set delay on output breaking
15-18 output contact
25-28 output contact
Typical example of use for two-stage thermostat is e.g in boiler-room, where there are two biolers from which one is main and the other one is auxiliary. The main boiler is managed according to set temperature and auxiliary boiler is switched in case temperature falls under set difference. Thus it helps to the main boiler in case outside temperature dramatically falls.
In the range of set difference (D) output 15-18 functions as normal thermostat to input 1

Thermostat with dead zone

Legend:

Ts - real (measured) temperature
T1- adjusted temperature
T2-T=T1-D
H1-adjusted hysteresis for T1
H2 - adjusted hysteresis for T2
dy1- set switching delay of the output
dy2 - set delay on output breaking
15-18 output contact (heating)
$25-28$ output contact (cooling)

Switching of output corresponds with input, which has lower temperatures when diffference is exceeded..
Differencial thermostat is used for keeping two identical temperature e.g. in heating systems (boiler and reservoir), solar systems (collector - reservoir, exchanger), water heating (water heater, water distribution)etc.
(type 1). In case temperature falls under set difference, output 2 switches.

Output is closed (heating) only if temperature is within adjusted range.If temperature is out of range, the contact opens. Tis set as T1-D.
The function is used for protection of gutters against freezing.

In case of thermostat with a „dead zone", it is possible to set temperature T 1 and a diff erence (respectively a width of dead zone D). If temperature is higher than T 1 , output contact of cooling switches ON ; if the temperature gets bellow T 1 , the contact switches OFF.
If the temperature gets bellow temperature T , the contact of heating switches ON and it switches OFF when temperature T is exceeded. This function can be used for example for automatic air warming and cooling in ventilation so the sit is always within the range T1 and T.

Thermostat for monitoring temperature of motor winding TER-7

- Monitors temperature in range of PTC thermistor
- Fixed levels of switching
- PTC sensor is used for sensing, It is in-built in motor winding by its manufacturer
- MEMORY function - active by DIP switch
- RESET of faulty state:
a) button on the front panel
b) by external contact (remote by two wires)
- Function of short-circuit or sensor disconnection monitoring, red LED flashing indicates faulty sensor
- Output contact: $2 x$ changeover/DPDT 8 A /250 V AC1
- Red LED shines and indicates exceeded temperature
- Terminals of sensor are galvanically separated, they can be shorted out by terminal PE without damaging the device
- Multivoltage supply AC/DC $24-240 \mathrm{~V}$
- 1-MODULE, DIN rail mounting

TER-7
Technical parameters:
Function:
Supply terminals:
Voltage range:
Burden:
Operating range:
Measuring circuit
Measuring terminals:
Cold sensor resistance:
Upper level:
Botton level:
Sensor:
Sensor failure indication:
Accuracy
Accuracy in repetition:
Switching difference:
Temperature dependance:
Output
Number of contacts:
Current rating:
Breaking capacity:
Inrush current:
Min. breaking capacity DC:
Mechanical life:
Electrical life (resistive):
Other information
Operating temperature:
Storage temperature:
Electrical strength:
Operating position:
Mounting:
Protection degree:
Overvoltage cathegory:
Pollution degree:
Max. cable size $\left(\mathrm{mm}^{2}\right)$:
Dimensions:
Weight:
Standards:
perature of motor winding
monitoring temperature
A1-A2
AC/DC 24-240V (AC 50-60Hz)
$\mathrm{AC} / \mathrm{DC} 24-240 \mathrm{~V}(\mathrm{AC} 50-60 \mathrm{~Hz})$
$\max .2 \mathrm{VA}$
$-15 \% ;+10 \%$
$\mathrm{Ta}-\mathrm{Tb}$
$50 \Omega-1.5 \mathrm{k} \Omega$
$3.3 \mathrm{k} \Omega$
$1.8 \mathrm{k} \Omega$
PTC temperature of motor winding
blinking red LED
$<5 \%$
$\pm 5 \%$
$<0.1 \% /{ }^{\circ} \mathrm{C}$
$2 x$ changeover/DPDT (AgNI / Silver Alloy) 8 A / AC1 2000 VA / AC1, 192 W / DC
$10 \mathrm{~A} /<3 \mathrm{~s}$
$250 \mathrm{VAC1} / 24 \mathrm{VDC}$
500 mW
3×10^{7}
0.7×10^{5}
$-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$
$-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.+158^{\circ} \mathrm{F}\right)$
4 kV (supply - output)
any
DIN rail EN 60715
IP 40 from front panel / IP 20 terminals
III.

2
solid wire max. 1×2.5 or 2×1.5 with sleeve max. 1×2.5 AWG (12)
$90 \times 17.6 \times 64 \mathrm{~mm}\left(3.5^{\prime \prime} \times 0.7^{\prime \prime} \times 2.5^{\prime \prime}\right)$
83 g (2.9 oz.)
EN 60730-2-9, EN 61010-1

Description

Connection

Note
Sensors could be in series in abide with conditions in technical specification - switching limit.
Warning!: In case of supply from the main, neutral wire must be connected to terminal A2.

Function

The device controls temperature of motor winding with PTC thermistor which is mostly placed in motor winding or very close to it. Resistance of PTC thermistor run to max $1.5 \mathrm{k} \Omega$ in cold stage.
By temperature increase the resistance goes strongly up and by overrun the limit of $3.3 \mathrm{k} \Omega$ the contact of output relay switch off - mostly contactor controlling a motor. By temperature decrease and thereby decrease of thermistor resistance under $1.8 \mathrm{k} \Omega$ the output contact of relay again switches on. The relay has function "Control of sensor fault". This controls interruption or disconnection of sensor.When switch is in position "TK" monitoring of faulty sensor is not functional - it is possibel to connect bimetal sensor with only 2 states: ON or OFF. The device can work with bi-metal sensor in this position.
Other safety unit is function "Memory". By temperature overrun (and output switches off) the output is hold in faulty stage until service hit. This bring the relay to normal stage (with RESET button) on front panel or by external contact (remote).
 $\varnothing 65 \mathrm{~mm}$

EAN code
ATR : 8595188125000
ATF : 8595188130165 ATC : 8595188130172

Technical parameters: ATR ATF

Supply

Power supply and tolerance:
Consumption, frequency:
Measuring

Temperature range:	+5 to $+40^{\circ} \mathrm{C}\left(+41^{\circ} \mathrm{F}\right.$ to $\left.+104{ }^{\circ} \mathrm{F}\right)$	$+5 \mathrm{to}+50^{\circ} \mathrm{C}\left(+41^{\circ} \mathrm{Fto}+122^{\circ} \mathrm{F}\right)$	
Accuracy:	$\pm 2^{\circ} \mathrm{C} / 36^{\circ} \mathrm{F}$		
Hysteresis:	$\pm 1^{\circ} \mathrm{C} / 34^{\circ} \mathrm{F}$		
Temperature sensor:	room	floor	room + floor
Night decline:	adj. $\pm 7^{\circ} \mathrm{C} / 45{ }^{\circ} \mathrm{F}$	adj. $\pm 10^{\circ} \mathrm{C} / 50{ }^{\circ} \mathrm{F}$	fix $-5^{\circ} \mathrm{C} / 41^{\circ} \mathrm{F}$
Off set/calibration:	adj. $\pm 7^{\circ} \mathrm{C} / 45{ }^{\circ} \mathrm{F}$	adj. $\pm 10^{\circ} \mathrm{C} / 50^{\circ} \mathrm{F}$	

Setting
Room temperature setting:
Offset setting:
Night decline setting:
Display

Power supply indication:
Output ON indication:
Night decline indication:
Indication of faulty floor sensor:

Indication- exceeded temp./ext.
sensor:
x
LED 1 flashing
Output

Type:	potential-free contact NO, material of contact - AgNi
Max. loadability:	$16 \mathrm{~A} / 250 \mathrm{~V}, 4000 \mathrm{VA}$ for $\mathrm{AC1}$
Contact separation:	galvanic
Mechanical life:	3×10^{7}
Electrical life (AC1):	0.7×10^{5}
Other information	
Operating temperature:	$-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(+14^{\circ} \mathrm{F}\right.$ to $\left.+131^{\circ} \mathrm{F}\right)$
Storage temperature:	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.+158^{\circ} \mathrm{F}\right)$
Electrical strength:	4 kV

Electrical strength:
Mounting:
Protection degree**:
Max. cable size $\left(\mathrm{mm}^{2}\right)$:
Dimensions:
Weight:
Standards:
** - more information on page 154

Design

It is possible to combine thermostats into multiframe
 switches ELEGANT with a wide color range.
Note: Complete offer of switching devices line ELEGANT can be found in blue catalogue of Intelligent and comfortable electrical installation (INELS) pg. 10-11 or in an individual catalogue ELEGANT Home switches, which can be sent to you upon request.

ATR - Analog Thermo Room:

- ATF - Analog Thermo Floor:
- ATC - Analog Thermo Combined: Is possible to use it without external sensor
- ATR, ATF, ATC

ATC

Room thermostat with temperature range +5 to $+40^{\circ} \mathrm{C}\left(+41^{\circ} \mathrm{F}\right.$ to $\left.+104{ }^{\circ} \mathrm{F}\right)$ with a built-in sensor

Floor thermostat with temperature range +5 to $+50^{\circ} \mathrm{C}\left(+41^{\circ} \mathrm{F}\right.$ to $\left.+122^{\circ} \mathrm{F}\right)$ with external sensor Function,"temporary temperature change" in range $\pm 10^{\circ} \mathrm{C}$ (decreasing / increasing temperature)

Room and floor thermostat, sensors are connected in series and block each other Function „temporary temperature change ${ }^{\prime \prime}$, fix $-5^{\circ} \mathrm{C} /+23^{\circ} \mathrm{F}$ (night decline)
Temperature range +5 to $+50^{\circ} \mathrm{C}\left(+41^{\circ} \mathrm{F}\right.$ to $\left.+122^{\circ} \mathrm{F}\right)$ for both sensors, adjustable separately

Night decline is activated by a pushbutton on device or external contact (only ATR) Night decline setting is done by an auxiliary button 2 (under main button, only ATR/ATF) Nastavení ofsetu (kalibrace $\pm 10^{\circ} \mathrm{C} / 50^{\circ} \mathrm{F}$) with „known" thermometer External sensor (TC-3,3m/9.84') is a part of delivery (only ATF/ATC), it is possible to extend its length up to $100 \mathrm{~m} / 328^{\prime}$ Design Obzor ELEGANT*, wide range of colours, possibility to combine more frames together

Description

* Auxiliary button 1 and 2 are accessible after removal of the main knob

Connection

ATR

ATF

ATC

Accessories:

See page 140

Digital room and floor thermostat Thermo

Adjusting

- DTR - Digital Thermo Room:

Room thermostat with temperature range +5 to $+50^{\circ} \mathrm{C}\left(+41^{\circ} \mathrm{C}\right.$ to $\left.+122^{\circ} \mathrm{C}\right)$ with a built-in sensor

- DTF - Digital Thermo Floor:

Floor thermostat with temperature range +5 to $+50^{\circ} \mathrm{C}\left(+41^{\circ} \mathrm{C}\right.$ to $\left.+122^{\circ} \mathrm{C}\right)$ with external sensor

- DTC - Digital Thermo Combined:

Combined thermostat with room and floor sensors and temperature range +5 to $+50^{\circ} \mathrm{C}\left(+41^{\circ} \mathrm{F}\right.$ to $\left.+122^{\circ} \mathrm{F}\right)$
Choice of temperature display from internal or external sensors
By program it is possible to choose, which sensor is active and if it should function in serial or in parallel

- DTF, DTC

External sensor (TC-3,3m)is a part of delivery (only ATF/ATC), it is possible to extend its length up to $100 \mathrm{~m}\left(328^{\prime}\right)$ Monitoring of disconnection or short-circuit of external sensor, fault is displayed

Other Funktions DTR, DTF, DTC

programs are pre-set according to most frequently used functions = „Plug and Play" - pushbutton lock to prevent unwanted manipulation with thermostat - phoice of display current/set temperature
, „preezing protection " in case temperature drops below $+50^{\circ} \mathrm{C}\left(+122^{\circ} \mathrm{F}\right)$ thermostat always switches heating on

- phoice of function heating or cooling - pasy and intuitive control by four pushbuttons
- putomatic shift summer/winter time
- poliday mode -it is possible to set temperature and time from 1 hour to 99 days without any intervention into program settings or turning heating off (suitable in case of planned absence holiday...)

Description of visual elements on the display

| Program mode | Day of the week | |
| :--- | :--- | ---: | ---: |
| Operational mode | AM/PM | |
| Time setting | Holliday mode | |
| Manual mode (trvalý/dočasný) | | Temperature display |
| External sensor | | Program events |

Description

Connection

DTR

solid wire 1×2.5 / 1.5 with sleeve (AWG 12)
$84 \times 89 \times 54.3 \mathrm{~mm}\left(3.3^{\prime \prime} \times 3.5^{\prime \prime} \times 2.14^{\prime \prime}\right)$
$120 \mathrm{~g}(0.260 \mathrm{z}$.
EN 60730-2-9, EN 61812-1, EN 61010-1

Standards:
** - more information on page 148

Design

It is possible to combine thermostats into multiframe switches ELEGANT with a wide color range. Note: Complete offer of switching devices line ELEGANT can be found in catalogue ELEGANT Home switches, which can be sent to you upon request.

Accuracy:

See page 140.

EAN kód
TEV-1: 8595188129121

Technical parameters	TEV-1
Function:	two-level thermostat
Supply terminals:	$\mathrm{L}-\mathrm{N}$
Voltage range:	$230 \mathrm{VAC} / 50-60 \mathrm{~Hz}$
Input:	max. 2.5 VA
Tolerance of voltage range:	$\pm 15 \%$
Measured circuit	
Measuring terminals:	T-T

Temperature ranges:

thermostat 1	$-20 . .+20^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.+68^{\circ} \mathrm{F}\right)$
thermostat 2	$-20 . .+20^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.+68^{\circ} \mathrm{F}\right)$
Hysteresis (sensitivity):	$3^{\circ} \mathrm{C}\left(\pm 1.5^{\circ} \mathrm{C}\right)$

Sensor:
thermistor NTC $12 \mathrm{k} \Omega / 25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$
Faulty sensor indication:
red LED flashing

Accuracy

Accuracy of settings (mechanical):	5%
Dependance on temperature:	$<0.1 \% /{ }^{\circ} \mathrm{C}$
Output	$1 \times$ changeover/ SPDT (AgNI / Silver Alloy)
Number of contacts:	$16 \mathrm{~A} / \mathrm{AC1}$
Current rating:	$4000 \mathrm{VA} / \mathrm{AC1}, 384 \mathrm{~W} / \mathrm{DC}$
Max. breaking capacity::	$30 \mathrm{~A} /<3 \mathrm{~s}$
Peak current:	$250 \mathrm{VAC1} / 24 \mathrm{VDC}$
Switched voltage:	500 mW
Min. switching output DC:	LED
Output indication:	3×10^{7}
Mechanical life:	0.7×10^{5}

Other information:
Operation temperature
$-30^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$
Operation position:
any
Protection degree: IP 65
Overvoltage cathegory: III.

Pollution level:
Max. cable size $\left(\mathrm{mm}^{2}\right)$:
Dimensions:
Weight: $110 \times 135 \times 66 \mathrm{~mm}$ ($\left.4.33^{\prime \prime} \times 5.3^{\prime \prime} \times 6.6^{\prime \prime}\right)$

238 g (8.4 oz.)
Standards:
EN 60730-2-9, EN 61010-1

Description of function

TEV-1 is a double thermostat designated for system of protection of roof watershoots against freezing. The device is placed in a waterproof box (IP65),sensor with double insulation,which is a part of the device, senses ambientrature.The device operates as zonal thermostata with independent setting of upper and bottom operational temperature.In case the ambient temperature is higher than T 1 (upper temperature), thermostat switches heating of watershoots off (icing melts down).In case the ambient temperature is lower thanT2 (bottom temperature),thermostat also switches heating off (to big freezing heating cannot manage to melt the ice).

Two-level thermostat with function "WINDOW" meaning that output is switched in case the measured temperature is within set range (adjustable in range $-20 . .+20^{\circ} \mathrm{C} /-4^{\circ} \mathrm{F}$ to $+68^{\circ} \mathrm{F}$)

- Used as protection against freezing (water-shoots, pavements, drives, pipes, etc.) heating is on when temperature falls under set upper level (e.g. $+5^{\circ} \mathrm{C} /+41^{\circ} \mathrm{F}$) and off in case it falls under lower level (e.g. $-10^{\circ} \mathrm{C} /-50^{\circ} \mathrm{F}$, when heating is not able effectively operate)
- Thermostat is placed in water-proof box with IP65, which allows installation outside, with in-built sensor TC-0
- Thermostat status is indicated by LED (3colours) under transparent cover
- Function monitoring short-circuit and sensor disconnection (break)
- Output changeover contact 16A/SPDT (AC-1)

Connection
Function heating

Function

Description

Opening for incoming cables
EAN code
TEV-2: 8595188129251
TEV-3: 8595188129268

Technical parameters	TEV-2	TEV-3
Function:	one-level thermostat	
Supply terminals:	L-N	

Voltage range:

Input:

Measured circuit
Measuring terminals:
Temperature ranges.
Sensor:
Faulty sensor indication:
Accuracy of settings (mechanical):
Depend
Output
Number of contacts:
Current rating:
Max. breaking capacity:
Peak current:
Switched voltage:
Min.switching output DC:
Output indication:
Mechanical life:
Electrical life (AC1):
Other information
Operation temperature
Operation position:
Protection degree:
Overvoltage cathegory:
Polution level:
Max. cable size $\left(\mathrm{mm}^{2}\right)$:
Dimensions:
Weight:

Standards:

Function TEV-2,TEV-3

TEV-2 and TEV-3 are universal single thermostats for universal use. In case ambient temperature is higher than set temperature relay is open (function HEATNG), for cooling function (opposite function) is possible to use NC contact of relay (V2).

- Single thermostat with possibility of temperature management in adjustable range (it is possible to modify this range or make a special one on request)
- It is used to regulate heating (or cooling) in demanding environments (outside , humidity, dustiness, etc.)
- Thermostat is placed in water-proof box with IP65, which enables installation outside, with in-built sensor TC-0
- TEV-2 - control and indication elements are placed under transparent cover
- TEV-3 - control and indication elements are placed directly on the cover (for easy orientation and frequent change of temperature)
- Thermostat status is indicated by LED (2 colours)
- Function of monitoring sensor disconnection and short-circuit
- Output changeover /SPDT contact 16A(AC-1)

Connection

Function heating Function cooling

Description TEV-2 (without cover)

Description TEV-3 (cover)

EAN code
TEV-4: 8595188140577

Technical parameters:	TEV-4
Supply	
Supply terminals:	L-N
Voltage range:	AC $230 \mathrm{~V} / 50-60 \mathrm{~Hz}$
Tolerance of voltage range:	-15\% .. +10\%
Input (apparent/loss):	max. 6VA / 0.7W
Function:	setting by jumper J3
Function - 鋉:	cooling
Function - III:	heating
Temperature setting	by jumper J2
- range 1:	$-30^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.32^{\circ} \mathrm{F}\right)$
- range 2:	$0^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.86^{\circ} \mathrm{F}\right)$
- range 3:	$+30^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}\left(86^{\circ} \mathrm{F}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$
Slight temperature setting:	potentiometer
Hysteresis:	$0.5 / 1.5 / 4^{\circ} \mathrm{C}\left(32.9{ }^{\circ} \mathrm{F} / 34.7{ }^{\circ} \mathrm{F} / 39.2{ }^{\circ} \mathrm{F}\right)$
Hysteresis setting:	by jumper J1
Output	
Output contact:	$1 \times \mathrm{NO}-\mathrm{SPST}\left(\mathrm{AgSnO}_{2}\right)$
Current rating:	$12 \mathrm{~A} / \mathrm{AC1}$
Max. breaking capacity:	$3000 \mathrm{VA} / \mathrm{AC1}, 384 \mathrm{~W} / \mathrm{DC}$
Peak current:	$30 \mathrm{~A} /<3 \mathrm{~s}$
Switched voltage:	$250 \mathrm{VAC} / 24 \mathrm{VDC}$
Min.switching output:	500 mW
Mechanical life:	3×10^{7}
Electrical life:	0.7×10^{5}
Other information:	
Operation temperature:	$-30^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.149^{\circ} \mathrm{F}\right)$
Storing temperature:	$-30^{\circ} \mathrm{Cto}+70^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
Electrical strengh:	4kV (supply-output)
Operation position:	sensor-side down
Protection degree:	IP65
Overvoltage cathegory:	III.
Pollution level:	2

Max. cable size $\left(\mathrm{mm}^{2}\right)$:
Suggested power-supply cable:
Dimensions:
Weight:
Standards:

Function

- Single point thermostatfor monitoring and regulation oftemperature in demanding enviroments (humid and contaminated,
agressive and defective, industrial workshops, washing rooms, green-houses, cellars and cooling boxes. . .)
- External version in IP65, box for mounting on the wall
- Built-in thermo-sensor is integrated in the device
- Two fuctions adjustable by jumper: heating and cooling
- 3 adjustable (by jumper) ranges of temperature, and fine adjustment through potentiometer
- 3 adjustable (by jumper) levels of hysteresis
- Supply voltage 230 V AC
- Potentialless NO- SPST contact 12A AC1 switching

Description (proportion is accordant to real size)

Connection

Device is standardly supplied with jumper L-15 (3-wire connection).
For the correct function of device is neccesary sensor-side down device mounting.

Hygro-thermostat RHT-1

- Hygro-thermostat for temperature monitoring and regulation in range $0^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$
and relative humidity monitoring and regulation in range 50...90\%
- Possibility of setting of up to 8 conditions for contact switching and function permanently ON/OFF
- Sensor is a part of the device - designated for measuring in switchboards
- Function of sensor control (damage, disturbances...)
- Fixed setting of temperature hysteresis at $2.5^{\circ} \mathrm{C} / 36.5^{\circ} \mathrm{F}$ and humidity at 4%
- Output state is indicated by red LED
- Supply voltage AC/DC 24-240 V
- Output contact 1x changeover/ SPDT 16A/250 V AC1
- In 1 module type, mounting onto a DIN rail

RHT-1: 8595188137263

Applicable standards:
EN 60730-2-9, EN 61010-1

Description of functon:

This device is designated for monitoring of parameters of environment (meaning temperature and relative humidity) in switchboards.. It enables setting of eight conditions of constact closing and therefore it is usable for various types of load (e-g-fans, heating, air-conditioning, dehydrating units...). While installing it is neccessary to take into account the fact that hysterisis rises by persistence of measured values between sensor and ambient environment. The device is equipped by sensor fault detection. In case of sensor falut, exceeding allowed limits (for temperature $-30^{\circ} \mathrm{C} /-22^{\circ} \mathrm{F}$ and $+80^{\circ} \mathrm{C} / 176^{\circ} \mathrm{F}$; for humidity 5% and 95%) or in case of faulty internal communcation higher than 50% (due to e.g. high ambient disturbances) contact opens and sensor fault i indicated. Sensor fault doesn't have influence on function permanently ON or pemanently OFF.
Note: In case the conditions for switching are not applied, relay is open

- External version in IP65, box for mounting on the wall
- Built-in hygro-sensor is integrated in the device
- Two functions adjustable by jumper: moisting and drying
- 3 adjustable (by jumper) levels of hysteresis
- Supply voltage 230V AC
- N0 contact closure 12A/AC1

RHV-1: 8595188140584

Technical parameters:
Supply
Supply terminals:
Voltage range:
Input voltage range:
Input (apparent/loss):
Setting function
Function - :
Function - :
Set. the scale of relative humidity:

- range 1:
- range 2:
- range 3:
Slight setting of relative humidity:
Hysteresis:

Hysteresis:
Hysteresis setting:
Output
Output contact:
Current rating:
Switching output:
Peak current:
Switched voltage:
Min.switching output:
Mechanical life:

Other information:
Operation temperature:
Storing temperature:
Electrical strengh:
Operation position:
Protection degree:
Overvoltage cathegory:
Pollution level:
Max. cable size $\left(\mathrm{mm}^{2}\right)$:
Suggested power-supply cable:
Dimensions:
Weight:
Standards:
Function

Description (proportion is accordant to real size)

Connection

Device is supplied with a standard jumper
For the device to operate correctly, it must be mounted with the sensor side down.

- Thermister temperature sensors are made of Negative Temperature Co-efficient (NTC) embedded in a PVC or metal sleeve with a thermally-conductive sealer
- Sensor TC - lead-in cable to sensor TC is made of wire CYSY 2Dx0.5 mm/0.02"

Sensor TZ - cable V03SS-F 2Dx0.5mm / $0.02^{\prime \prime}$ with silicone insulation for use in high temperature applications
silicone insulation for use in high temperature applications

- Sensor PT100 - shielded silicon $2 \times 0.22 \mathrm{~mm}^{2}$ (AWG 21) , shielding connected with a case
- Weight of sensors TC: Weight of sensors TZ: Weight of sensors PT100:
-TC-0-5 g (0.2 oz.) -TZ-0 - $4.5 \mathrm{~g}(0.16 \mathrm{oz}$.
$-\mathrm{T}(-3-108 \mathrm{~g}(3.8 \mathrm{oz}) \quad-\mathrm{TZ}-3-.106 \mathrm{~g}(3.74 \mathrm{oz}$.$) \quad - PT100-3 -68 \mathrm{~g}(2.4 \mathrm{oz})$.
- TC-6 - 213 g (7.5 oz.) \quad-TZ-6-216g(7.6 oz.) -PT100-6-149 g(5.3 oz.)
- TC-12-466 g(16.4 oz.) -TZ-12-418g (14.7 oz.) -PT100-12-249 g(8.8 oz.)

Technical parameters	TC	TZ	PT100
Range:	$0^{\circ} \mathrm{Cto}+70^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$	$-40^{\circ} \mathrm{Cto}+125^{\circ}\left(1-40^{\circ} \mathrm{F}\right.$ to $\left.257^{\circ} \mathrm{F}\right)$	$-30^{\circ} \mathrm{Cto}+200^{\circ}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.392{ }^{\circ} \mathrm{F}\right)$
Scanning element:	NTC 12K 5\%	NTC 12K 5 \%	PT 100
In air/ in water:	(т65) $92 \mathrm{~s} / 23 \mathrm{~s}$	(t65) $62 \mathrm{~s} / 8 \mathrm{~s}$	(т0.5) $\quad-17 \mathrm{~s}$
In air/ in water:	(t95) $306 \mathrm{~s} / 56 \mathrm{~s}$	(т95) $216 \mathrm{~s} / 23 \mathrm{~s}$	(t0.9) $\quad-/ 19 \mathrm{~s}$
Cable material:	High temperature PVC	Silicone	Silicone
Terminal material:	High temperature PVC	Nickel plated copper	Copper
Protection degree:	IP 67	IP 67	IP 67

T65 (95): time, which sensor needs to heat up on 65 (95) \% of ambient temperature of environment, in which is located

TC : Thermal sensors for range $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(32{ }^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
TC-0 Thermo sensor can be connected directly to terminal block (sensor length $110 \mathrm{~mm} / 4.33^{\prime \prime}$)
TC-3 Temperature senzor 3 m (9.8 ${ }^{\prime}$)
TC-6 Temperature sensor 6 m (19.7')
TC-12 Temperature sensor 12 m (39.4')

TZ: Thermal sensors for range $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.257^{\circ} \mathrm{F}\right)$
TZ-0 Thermo sensor can be connected directly to terminal block (lenght of sensor $110 \mathrm{~mm} / 4.33^{\prime \prime}$)
TZ-3 Temperature senzor 3 m (9.8^{\prime})
TZ-6 Temperature senzor 6 m (19.7')
TZ-12 Temperature senzor 12 m (39.4')

PT-100: Thermal sensors for range $-30^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.392^{\circ} \mathrm{F}\right)$
PT100-3-Temperature senzor $3 \mathrm{~m}\left(9.8^{\prime}\right)$, double isolation silicone
PT100-6-Temperature sensor $6 \mathrm{~m}\left(19.7^{\prime}\right)$, double isolation silicone
PT100-12-Temperature sensor 12 m (39.4^{\prime}), double isolation silicone

Sensor drawing

Sensor photo

PT100

TZ

Installation box LKM-45
Recomended installation box for wall mounting of THERMO thermostats

Type LKM-45, dimensions: $98 \times 98 \times 45 \mathrm{~mm}$, color: white Reference number: 8595188130806

Technical information

Main regulations for correct use of products 152
Product loadability 153-154
Electro-magnectic compatibility of products 155
EMC chart 156

Main instructions for correct use of ELKO EP products

To ensure correct and perfect function of a device and its safe operation, it is necessary to ensure and observe several main regulations:

1.) Device supply

- it is necessary to ensure continuous supply of the device without drops and voltage peaks. It is mainly important for device (e.g. dimmers) where there is synchronization managed by sine wave of the main and fault in the main ca cause unreliable function of the device
- it is necessary to observe correct connection of terminals, and in case of DC supply voltage also polarity.
- it is necessary to observe allowed tolerance of the size of supply voltage which is given by technical parameters of individual devices
2.) Protection of the device
- it is necessary to ensure protection of the device by adequate elements of overvoltage protection - by fuses, by surge arrestors

3.) Elimination of disturbances on input circuits

- it is recommended to eliminate disturbances on control inputs of devices by suitable elements (R - C elements) and thus minimize creation of inductive voltage on incoming wires - pay attention when connecting control inputs and while keep in mind max. current and min. voltage at rest, which can cause spontaneous switching of device) e.g. connected glow lamps)

4.) Opereting conditions

- to assure the granted life and correct functions of device, there is not recommended to leave the device in extreme conditions that could negative way influence the correct device functions - permanent temperature influence over $70^{\circ} \mathrm{C}$, agressiv exhalations, chemicals, high relative humadity over 95%, high electromagnetic field or microwave radiation - for error-free function it is necessary to avoid device placement close to electromagnetic interference source
- all mentioned products fulfill the EMC requirements in accordance to EU Directive 89/336/EEC. Notwithstanding it is necessary to pay attention by device connecting to circuit with electrical appliances that produce electromagnetic interference (contactors, motors), and pay attention to close power cables. It is recommended that device connecting cables (supply and control inputs) are possibly short and go separately from power cables. In case the device is connected to circuit with contactors or motors it is necessary to protect the device with appropriate extern protection components - RC members, varistors or surge voltage protector.
- when you use AL wires, it is necessary to follow requirements of ČSN standard 370606: 1959 and ČSN 370606 amendment 2: 1992

5.) Device handling and using

- input terminals do not fill-in with high power (for serial terminals max $0,5 \mathrm{~N} / \mathrm{m}$), do not give excessive pressure to carrier terminal parts to avoid demage of inner device construction - protect the device before falls and excessive vibrations that could demage relays contacts
- do not overload input relay's contacts, especially when using loads with other category then AC1
- when at switching of big loads the relay contacts get sealed it is necessary to use inserted contactor or power relay tuned to required load for given application

Description of used protection elements in device

All time and monitoring relays from our assortment are equiped with protective elements (varistors) against possible overvoltage in supply main. Limit voltage of used varistors is 275 V . At short-time overvoltage in supply main varistor decrease its leak resistor and accumulate arosen overvoltage. When this overvoltage behave as short-time peak, varistor is able to react and protect the device against negative influences. As other protection elements there are used transils and zener diodes that eliminate overvoltage impulses in supply and input circuits of device (e.g. when switching inductive loads). In case of switching inductive loads it is recommended to separate a supply of power element (motors, contactors etc.) from supply of measuring and control device inputs.

On the diagramms bellow you can see oscilographic running of disconnecting of loads (contactors) and reaction of protective elements to arosen voltage pikes

Process of disconnection of contactor with coil on 230V/AC without R-C member

Process of disconnection of contactor with coil on 230V/AC and R-C member $3900 \mathrm{hm}-330 \mathrm{nF}$

Process of disconnection of contactor with coil and limited varistor on $230 \mathrm{~V} / \mathrm{AC}$

Product loadability

RFFA-12B; RFSA-628; RFSA-66M ; SOU-2, RFST-116																		
Itpeofload	$\underset{\substack{\text { cosq2095 } \\ \mathrm{Ac}}}{-2}$	$-\underset{A C 2}{(M)}$	$-\mathrm{Mc}$	\square				$\underbrace{}_{\text {Açb }}$	$\sqrt{a C 12}$		$\underset{\substack{\text { Ac14 }}}{\sqrt{n}}$		$-\sqrt{\mathrm{DC1}^{-}}$	$-\underset{0 c 3}{M}$	$-$	\widetilde{O}	$\stackrel{M}{\mathrm{DC} 13}$	$\overline{\text { ocl4 }}$
$\begin{aligned} & \text { contact material } \mathrm{AgSnO}_{2} \\ & \text { contact } 8 \mathrm{~A} \end{aligned}$	250//8A	200/ 5 A	$250 / 74$	\times	\times	200W	$200 / 74$	$250 / 14$	$2500 / 14$	\times	$200 / 74$	$2501 / 38$	$30 \mathrm{~V} / 8 \mathrm{~A}$	$30 \mathrm{~V} / 3 \mathrm{~A}$	300/ 22	$301 / 8 \mathrm{~A}$	$300 / 2 \mathrm{~A}$	

RHV-1; SOU-3; TEV-4																		
Trpeofload		$-(\underset{A C 2}{(M)}$	$-\underset{A B C}{M-}$	ACsa uncompensated		chen		$\sim_{\text {Accb }}$	$-{ }_{\text {Cl2 }}$		$\sqrt{\mathrm{AlCl}_{4}}$		$-{ }_{\text {Oc }}$	$-$	$-$	$-\sqrt{012}$	$\sqrt{\mathrm{m}_{013}}$	$\sqrt{\text { DC14 }}$
	$2501 / 22$	2007/3.7	200/22A	$2300 / 224$ (500 V$)$		${ }^{1220 w}$	\times	200/22A	2501/75	250/4.5A	200/ /4,	20V/45A	244122	24/4.5A	24V/3A	24V/12A	24V/1.5A	24V/1.5A

CRM-4; CRM-42; MR-41; MR-42; RFSA-11 B; RFSA-61B; RFSA-61M; RFST1-11B a RFDAC-71B, SHT-1; ;HT-1/2; ; SHT-3; SHT-3/2; SMR-B; SOU-1; RHT-1; ;TR-3A; TER-3B; TER-3C; TER-3D; TER-3E; TER-3F; TER-3G; TER-3H; VS11 16;; VS11 6U; VS316/24V; VS316/230V

Tpeefload	$\begin{gathered} \text { cosquas } \\ \text { cosp } \\ \text { act } \end{gathered}$	$-\underset{a c 2}{(M)}$	$-\underset{A G 3}{(M)}$	ACsa unompenated			$\underset{\mathrm{A} \cdot \mathrm{a} 9}{3}$	$\mathrm{men}_{\mathrm{Acb}}$	$\sqrt{\mathrm{AC12}}$		$\underset{A C 14}{\bar{m}}$		$-\sqrt{D_{01}}$	$-$	$-\underset{0 c 5}{(M)}$	$\sqrt{0012}$	$\overline{\mathrm{MCC}}$	$\overline{D_{014}}$
	200V/160	$2501 / 5 A$	2001/3	$230 / 38 \mathrm{~B}$ (69074)		1000	*	2501/3A	*	x	25016 6	$2081 / 6 \mathrm{~A}$	24/109	24V/3A	24/ $/ 2$	$24 / 6$ 6	24/124	x

Tpeefload	$\underset{\substack{\text { cosazas } \\ \text { ci }}}{\text { ces }}$	$-$	$-\underset{A B}{M}$	$\stackrel{\square}{\text { ACs uncompensated }}$				$\mathcal{A}_{\text {Aclb }}$	$-{ }_{\text {act }}$	$\sqrt{3 / 2} \times$	$\sqrt{\mathrm{ACl} 14}$		$-{ }_{\text {01 }}^{-}$	$-$	$-$	$\bigcirc{ }_{\text {OC12 }}-$	$\sqrt{\mathrm{m}_{\mathrm{DC13}}}$	$\sqrt{\text { DC14 }}$
	200/88	25013 A	250/2A		\times	300w	\times	2001	$250 \mathrm{~V} / 1 \mathrm{~A}$		2001	200\%/3A	24V/8A	24/34	24/2A	24/88	$24{ }^{2} / 2 \mathrm{~A}$	

HRH-6																		
Typeofload		$-\underset{A C 2}{M}-$		ACsa uncompensated		cimen	$\underset{A C 6 a}{3 \mid k}$	$\operatorname{man}_{\text {Acbb }}$	$\longdiv { C l }$	$\sqrt{3 / 2}$	$\overline{\mathrm{m}}_{\mathrm{Cc} 14}$		$-\widetilde{D 1}$	$-$	$-$	$\sqrt{012}$	$\bar{\sim}_{0 \subset 13}$	$\sqrt{\text { DC14 }}$
	200V 100	200V/3A	$2501 / 2 A$	230/2946004)	\times	sow	*	$250 / 28$	2007/6A	200/3.8A	$2501 / 3.8 \mathrm{~A}$	200/ 3.88	24V/108	24V/3.8A	24/2.5a	24V100	244/1.3A	24/1.3A

Trpeofload		$-(\mathbb{M C D}$	$-\mathrm{M}_{\mathrm{AB}}^{\mathrm{M}}-$	ACsa uncompensated				$\mathcal{m}_{A \subset b}$	$\stackrel{-}{\mathrm{ACl}_{12}}$		$\underset{\mathrm{ACl4}}{\bar{m}}$		$-{ }_{\text {Oc }}$	$-(\mathrm{Mc}$	$-\mathrm{M}$	$-\sqrt{0012}$	$\sqrt{\mathrm{m}_{0} 13}$	$\overline{\text { DC14 }}$
	250/168	200/ /5A	2501 /3A		\times	800w	*	200/3A	200 V 10 A	$2501 / 6{ }^{\text {a }}$	$2501 / 6{ }^{\text {a }}$	2501/6A	24/16A	$24 \mathrm{~V} / 6 \mathrm{~A}$	24V/4A	24/16	24/2A	24/2A

	bubbs, halogen lamps	low-voltage el.bulbs 12-24V wound transform		LeDlamps	ekonomic fluorescent	switching management	
	$\xrightarrow[R]{(M)}$	$P_{+}^{-} r_{-}^{-1}[$	$\sqrt{5}=-\sqrt{x}$	(4 233vac dimmable	$\begin{aligned} & \text { dimmable } \end{aligned}$		Ω_{V} descending edge
DIM-2	\bullet	-	x	x	\times	\bullet	x
DIM-5	\bullet	\bullet	\times	x	\times	\bullet	\times
DIM-6	\bullet	\bullet	\bullet	x	x	\bullet	\bullet
DIM-10	-	-	x	x	x	-	x
DIM-14	\bullet	\bullet	-	\times	\times	\bullet	\bullet
DIM-15	x	\times	\times	-	-	x	\bullet
RFDA-11B	\bullet	\bullet	\bullet	x	x	\bullet	\bullet
RFDA-71B	\bullet	\bullet	\bullet	x	x	\bullet	\bullet
RFDW-71	\bullet	\bullet	-	x	\times	\bullet	\bullet
SMR-S	\bullet	\bullet	x	x	x	\bullet	x
SMR-U	\bullet	\bullet	\bullet	x	x	\bullet	\bullet

Demonstrated symbol are informative

Problematic choice of suitable relay contact for a particular load switched with a product is described below.
Mostly we experience problems with incorrect choice of load (meaning incorrect relay for a particular load) which results in permanent switching of contact (sealing) or damage on relay contact - which then results in malfunction.
What load can you use?
Detailed types of load according to standard EN 60947 are described in charts below - categories of use.

Category of use	Typical use	EN
$A C \operatorname{curent}, \cos \varphi=P / S(-)$		
AC-1	Non-inductive or slightly inductive load, resistance furnace Includes all appliances supplied by AC current with power factor (cos.) 0,95 . Examples of use: resistance furnace, industrial loads	60947-4
AC-2	Motors with slip-ring armature, switching off	60947
AC-3	Motors with short-circuit armature, motor switching when in operation This category applies to switching off motors with short-circuit armature while in operation. While switching, contactor switches current which is 5 up to 7 times rated current of motor.	6094-4
AC-4	Electro-motors with short-ircruit armature: startup, braking by backset, changeover	60947
AC-5a	Switching of electrical gas-filled lights, fluorescent lights	60947-4
AC-5b	El. bulb switching Enables low contact loading due to resistance of cold fiber is many times smaller that the one of hot fiber.	60947-4
AC-6a	Switching of transformers	60947-4
AC-6b	Switching of capacitors	60947-4
AC-7a	Switching low inductive loads of home appliances and similar applications	60947
AC-7b	Load of motors for home appliances	60947
AC-8a	Switching of hermetically sealed motors of cooling compressors with manual reset switches against overload Hermetically sealed cooling compressors have to be placed in one box without external shaft or shaft padding and motor must operate with cooling liquid	60947
AC-8b	Switching of hermetically sealed motors of cooling compressors with manual reset switches against overload Hermetically sealed cooling compressors have to be placed in one box without external shaft or shaft padding and motor must operate with cooling liquid	60947
AC-12	Switching of semiconductor loads with separation transformers	60947-5
AC-13	Switching of semiconductor loads with separation transformers	60947-5-1
AC-14	Switching of low electro-magnetic loads (max.72VA)	60947-5-1
AC-15	Management of altermating electro-magnetic loads This ategory applies to switching inductive loads with input for closed electro-magnetic ciruuit higher than 72 VA Use:swithing coils of contatators	60947-5
AC-20	Connecting and disconnecting in unloaded states	60947-3
AC-21	Switching resistive loads, including low loading	60947-3
AC-22	Switching of mixed resistive and inductive loads, including low overloading	60947-3
AC-23	Switching of motor loads or other high inductive loads	60947-3
AC-53a	Switching of motors with short-circuit armature with semiconductor contactors	60947
DC current, $\mathrm{t}=\mathrm{L} / \mathrm{R}(\mathrm{s}) \quad$ Note: Category AC 15 replaces formerly used category AC 11		
DC-1	Non-inductive or low inductive load, resistive furnaces	60947-4
DC-3	Shunt motors: start-up, braking by backset, reversion, , esisitive braking	60947-4-1
DC-5	Series motor: start-up, braking by backet, reversion, resistive braking	60947-4-1
DC-6	Non-inductive or low inductive loads, resistive furnaces - el. bulbs	60947-4-1
DC-12	Management of resistive loads and fixed loads with insulation by opto-electric element	60947-5-1
DC-13	Switching of electromagnets	60947-5-1
DC-14	Switching of electromagnetic loads in circuits with limiting resistor	60947-5-1
DC-20a(b)	Switching and breaking without loadd: frequent switching, b: occasional switching)	60947-3
DC-21a(b)		60947-3
DC-22a(b)	Switching of compound ohmic and inductive loads including linited overloads (e.g.g shunt motors) (a. frequent switching, b: random switching)	60947-3
DC-23	Swiithing of highly inductive loads (e.g. series motors)	60947-3

How can you distinguish for which load is our product (relay) designated?

Dur company record this information on a products and alsoin our catalogue instruction manual and other promotional and technical material (web-site etc)
It is important to realize that itis notalways possible to point out load because of lack of information about the device (user cannot measure cos.) or it is not possible because of inconstancy of parameters of switched device.
Manufacturer of relays record always guaranteed parameters in ideal conditions which are done by a norm (temperature, pressure, humidity, etc.) and reality can be in a lot of cases different. Category of use (classification) of particular relay is done by material of output contacts.
Basic types of materials which are used for production of contacts for high-performance relay are:
a)Agcd - suitable for switching ohmic loads. Before of harmfullness of of, this type of contact is remitted.
b) AgNi - designated for switching resistive loads, good quality switching and conducting (contact doesn't oxidate) smal currents/voltages, it is not designated for surge currents and loads with inductive component
c)AgSn or AgSn0 - suitable for switching loads with inductive component, not suitable for switching small currents/voltages, itis more resistive to surge currents, suitable for DC voltage switching, less suitable for switching loads of ohmict type
WWf (wolfram)-special contact designated for switching surge currents with inductive component
e)wwith gold (AgNi/Au) -it is used for""improving" contacts for low currents/ voltages, prevents oxidation.

Electromagnetic compatability (EMC) is a new scientific field which was founded in the 60 s last century. It had been known only to a small number of specialists working in a military and cosmic research.
Electromagnetic compatability EMC is defined as an ability of a device, system or a machine to show the correct operation even in an environment in which tehe are other sources of electromagnetic signals (natural or artificial), and also an ability not to influence negatively the environment by its own "electromagnetic action" and not to radiate signals that would disturb other devices. It is an indicator of good quality and reliability. Breach of such EMC requirements may cause several damages with catastrophical consequences.
When testing EMC of a device (technical and biological), basic is represented by so called " fundamental chain of EMC" shown in the picture. This chain shows a system problematic of EMC and we inspect all three components.


```
SOURSE OF
```

SOURSE OF
ELECTROMAGNETIC
ELECTROMAGNETIC
DISTURBANCES

```
    DISTURBANCES
```

motors, switches, relays, power distributions, semi-conducting alternators, luor tubess, arc furnances, welding machines, oscillators, PC, digital systems, electrostatic discharge.

ENVIRONMENT OF DISTRIBUTION, ELECTROMAGNETIC STRUCTURE
air space, energy cables, supply convection, convection, grounding, screening, signaling conductors, data condutors..

DISTURBED OBJECT,
DISTURBING RECEIVER
digital devices, PC, measuring devices, automatization device, telecomunication system, data transmission system, wireless set, televisor...

Test SURGE

For guarantee the immunity of our devices against to electromagnetic disturbance we are doing EMC tests and according results we are still innovating our product to be accoding the EMC norms with reserve. The most important test is immunity against gust of high-energy voltage and current impulse (SURGE), what is made according the norm IEC 61000-4-5.
By this are controlled our products in case of short time pulse, what is apllicated as to input as to output circuits of divices, to switching inputs, sensing inputs,.. Our produts pass all criterias and are fully competitive to foreign products.
Test SURGE is used in practice mainly for 1-phase devices with take-off current to 16 A . It makes use of voltage impulse $1,2 / 50 \mathrm{~ms}$ no load and current impulse $8 / 20 \mathrm{~ms}$ for short time. Size of used voltage impulse is $0.5 \mathrm{kV}, 1 \mathrm{kV}, 2 \mathrm{kV}$ and 4 kV , size of used current impulse is 2 kA on 4 kV with choise of changing polarity. For testing by impulses is as coup mode specify capacitive coup .

Test BURST

Other very important test is test immunity against quick short-lived effect (couple of impulses- BURST), which dissimulated influence if industry disturbance. Test is made according the norm IEC 61000-4-4.
Disturbance signal is injected to supply circuits and communication cabling. Coupling is made by 1-phase capacitive circuit or coupling capacitive ribband to supply, signalling or data convection of tested device. Size of testing impulses is $0,5 \mathrm{kV}, 1 \mathrm{kV}, 2 \mathrm{kV}$ and 4 kV in possitive and negative polarity. Repeat frequence is 2.5 kHz , or 5 kHz . Period of testing $0-6$ minut by steps for 0.1 s .

Test POWERFAIL

For right function of products in industry is important POWERFAIL test - simulation of decreasing and failure of supply voltage. Made according the IEC 61000-4-11.
Short-time supply decreasing are random decreasing of supply voltage, which are more than $10-15 \%$ of its nominal size and have short time existing $0.5-50$ periodes of basic frequency 50 Hz .
Short breaks of voltage are short time decreasing over 100%. Mentioned changes of supply circuit voltage are made in practise by disturbance in mains (high voltage, low voltage) and breaks on load of the main.

Test of EMC EMISSIONS

Electronic devices must be designed not to be a source of oversize electric or electromagnetic disturbances in its surroundings. Test is executed according to standard EN 55022.
Emissions are measured by wires or by air.

Test OF ELECTROMAGNETIC HIGH-FREQUENCY FIELD AND HF SIGNAL COMING FROM THE MAIN

The purpose of this test is to verify immunity of the device against electromagnetic fields that are created by radio transmitters or by any other device which transmits electromagnetic energy by uninterrupted waves (walkie-talkies, radio and TV transmitters.)
Test is carried out against disturbances in the main and emissions. We apply testing level 3 which for HF field means intensity of field $10 \mathrm{~V} / \mathrm{m}$ and for HF signal it is voltage level 10 V .

Test OF ELECTROSTATIC DISCHARGE

It is a test of resistance against discharges of electrostatic energy caused by servicing or by surrounding objects. Such discharge can damage a device or its components.
Test is carried out by direct or indirect application of discharges to a tested device. Test is carried out according to a standard EN 61000-4-2.Direct influence of discharges is targeted into such places and surfaces that are accessible to servicing during common use. Indirect influence of discharge is done by horizontal and vertical coupling board.
The device is treated by at least ten individual discharges for positive and negative polarity. testing levels are $2 \mathrm{kV}, 4 \mathrm{kV}, 6 \mathrm{kV}, 8 \mathrm{kV}, 15 \mathrm{kV}$.

Company ELKO EP has its own test laboratory in which it carries out pre-certification for conditions that must be met by each of our products. Thus customers gets not only a product of a high quality, which is ensured by many years of experience in the field of switching relays, but also a product which can operate in demanding conditions of industrial environment. Product, tested this way, guarantees reliability and functionality to customer's full satisfaction.

Time relays				Dimmers			
CRM-81J/230V	3	3	55022/A	PS-10-12; PS-10-24	3	3	55022/B
CRM-81J/UNI	3	3	55022/A	PS-30-12; PS-30-24	3	3	55022/B
CRM-83J/230V	3	3	55022/A	PS-100-12; PS-100-24	3	3	55022/B
CRM-83J/UNI	3	3	55022/A	PS-30R	3	3	55022/A/B
CRM-82T0	3	3	55022/A	ZSR-30	3	3	61000-6-3
SJR-2/230V	3	3	55022/B	ZNP-10-12V	-	3	55022/B
SJR-2/UNI	3	3	55022/A	ZNP-10-24V	-	3	55022/B
CRM-2T/230V	3	3	55022/B	Other modular devices			
CRM-2T/UNI	3	3	55022/A	SOU-1/230V	3	3	61000-6-3
CRM-2H/230V	3	3	55022/A	SOU-1/UNI	3	2	55022/A
CRM-2H/UNI	3	3	55022/A	SOU-2	3	3	61000-6-3
CRM-91HE/UNI	3	3	55022/A	SOU-3	3	3	55022/B
CRM-2HE/UNI	3	3	55022/A	MR-41/230V	3	3	55022/A
CRM-91H/230V	3	3	55022/B	MR-41/UNI	3	3	55022/A
CRM-91H/UNI	3	3	55022/A	MR-42/230V	3	3	55022/A
CRM-93H/230V	3	3	55022/B	MR-42/UNI	3	3	55022/A
CRM-93H/UNI	3	3	55022/A	Monitoring relays			
CRM-9S	-	3	61000-6-3	HRN-41	3	3	61000-6-3
CRM-61	3	2	61000-6-3	HRN-42	3	3	61000-6-3
SHT-1	3	3	55022/A	HRN-33	3	3	55022/A
SHT-1/2	3	3	55022/A	HRN-34	3	-	-
SHT-3	3	3	55022/A	HRN-35	3	3	55022/A
SHT-3/2	3	3	55022/A	HRN-37	3	3	55022/A
PDR-2A/230V	2	3	61000-6-3	HRN-63	3	3	55022/A
PDR-2A/UNI	3	3	61000-6-3	HRN-64	3	-	-
PDR-2B/230V	2	3	61000-6-3	HRN-67	-	-	-
PDR-2B/UNI	3	3	61000-6-3	HRN-55	3	3	55022/B
PRM-91H/8	3	3	55022/B	HRN-55N	3	3	55022/B
PRM-91H/11	3	3	55022/B	HRN-57	3	3	55022/B
PRM-92H	2	3	55022/A	HRN-57N	3	3	55022/B
PRM-2H	2	3	55022/A	HRN-54	3	3	55022/B
SMR-T	2	2	61000-6-3	HRN-54N	3	3	55022/B
SMR-H	2	2	55022/A	HRN-56/120	3	3	55022/B
SMR-B	2	2	61000-6-3	HRN-56/208	3	3	55022/B
CRM-4	3	3	55022/B	HRN-56/240	3	3	55022/B
CRM-42	3	3	55022/A	HRN-56/400	3	3	55022/B
Power and auxiliary relays				HRN-56/480	3	3	55022/A
VS116K	3	3	55022/A	HRN-56/575	3	3	55022/A
VS116U	3	2	55022/A	HRN-43	3	3	55022/A
VS308K/230V	3	3	61000-6-3	HRN-43N	3	3	55022/A
VS308K/UNI	3	2	55022/B	PRI-32	3	3	61000-6-3
VS308U	3	2	55022/A	PRI-51/1	3	3	61000-6-3
VS316/24V	3	-	-	PRI-51/2	3	3	61000-6-3
VS316/230V	3	3	55022/B	PRI-51/5	3	3	61000-6-3
Dimmers				PRI-51/8	3	3	61000-6-3
DIM-2	2	2	61000-6-3	PRI/16	3	3	61000-6-3
DIM-5	2	2	61000-6-3	PRI-51/0.5	3	-	-
DIM-14	2	2	55022/B	PRI-52	3	3	55022/A
DIM-6	2	2	55014-1	PRI-41	3	3	61000-6-3
DIM6-3M-P	2	2	55014-1	PRI-42	3	3	61000-6-3
DIM-15	2	2	55014-1	HRN-1/230V	3	3	55022/A
SMR-S	2	2	55022/A	HRH-1/24V	3	3	55022/A
SMR-U	2	2	55022/B	HRN-1/110V	3	3	55022/A
DIM-10	2	2	55022/B	HRN-5	3	3	61000-6-3

			$\begin{array}{\|c} \hline \\ \hline \end{array}$
HRH-4/230V	3	3	55022/B
HRH-4/24V	3	3	55022/B
HRH-6/AC	3	3	61000-6-3
HRH-6/DC	3	-	-
COS-1	3	3	55022/A
Thermostats			
TER-3A	3	3	55022/B
TER-3B	3	3	61000-6-3
TER-3C	3	3	55022/B
TER-3D	3	3	61000-6-3
TER-3E	3	3	55022/B
TER-3F	3	3	55022/B
TER-3G	3	3	55022/B
TER-3H	3	3	55022/B
TER-4/230V	3	3	55022/B
TER-4/24V	3	3	-
TER-9/230V	3	3	55022/B
TER-9/24V	3	3	-
TER-7	3	3	55022/B
ATR; ATC; ATF	2	2	55022/B
DTR; DTC; DTF	2	2	55022/B
TEV-1	3	3	55022/B
TEV-2	3	3	55022/B
TEV-3	3	3	55022/B
TEV-4	3	3	55022/B
RHT-1	3	3	55022/B
RHV-1	3	3	55022/B

Complementary information

Products packing 158
Dimensions 159-162
Examples of usage 163-170
Products in house coming from us 172-173
Production technology 174-175
Support of project designing 176
We export to 177

Products packing

Packing of 3-MODULE relay - 1 pcs COS-1, HRH-1, HRN-41, HRN-42, HRN-43, PDR-2, PRI-41, PRI-42, PS-12, PS-24, PS-R, ZSR-30,
ZNP-10, ZTR-10, HRN-56/480, 575

Packing of plug - in relays - 2 pcs
SHT-1, SHT-3, SHT-1/2, SHT-3/2, SOU-2, TER-9

Packing of plug - in relays -2 pcs PRM-91H/11, PRM-92H, PRM-2H

Packing of 1-MODULE relay with accessories SOU-1, CRM-91HE , CRM-2HE

Packing of 1-MODULE relay - 12 pcs VS116K, VS116U, VS308K, VS316/24, VS316/230,USS, VS

Packing of 1-MODULE relay - 10 pcs

CRM-81J, CRM-83J, CRM-82T0, CRM-61, CRM-9S, CRM-2H, CRM-2T, CRM-4, CRM-42, SOU-1, DIM-2, DIM-5, DIM-14, DIM-15, HRH-5, HRN-33, HRN-34, HRN-35, HRN-51, HRN-52, HRN-54, MR-41, MR-42, PRI-31, PRI-51, SJR-2, TER-3, TER-7, HRN-56, HRN-63, HRN-64, HRN-67

Dimensions

2-MODULE DESIGN

SOU-3

3-MODULE DESIGN

RHV-1, TEV-4

ATR, ATF, ATC

PANEL PDR-2/A, PDR-2/B

HRN-41, HRN-42, HRN-43,HRN-43N, PRI-41, PRI-42, COS-1, HRH-1, TER-4

DTR, DTF, DTC

PANEL ZSR-30, PS-30-R, ZNP-10

PS-100-12, PS-100-24

PS-30-12, PS-30-24

PS-10-12, PS-10-24 6-MODULE DESIGN

ES-11

750

782

HRH-6

sensor for SOU-1, SOU-2

external potentiometr for CRM-2HE, CRM-91HE

$\varnothing 15$

SR051; SR101; SR151

SR200; SR250
box IP66 for TEV3

box IP66 for TEV1,2

SR300; SR400; SR600

Examples of use

Multifunction time relay CRM-91H,CRM-93H

- for electric appliances, where is necessary to change the exact timing - controlling of the illumination, heating, motors, machines, ventilators, contactors...

Multifunction time relay with contactless output CRM-9S

- using for warning illuminatin on the road, flashers, cyclers, often switched systems ...

Multifunction time relay with external potentiometer CRM-91HE

- time adjusting via external operating element, operating on panel, switchboard doors

Singlefunction time relay CRM-81J

- time switch, using for run down the pump after switch off the heating, switching of ventilators ..

Multifunction time relay CRM-61

- for electronic appliances, light control, heating, motors, fans.....

Examples of use

Time relay plug-in type PRM-91H, PRM-92H

- serves to control light signallization, heating, motor and fan control... etc.

Doublestage delay unit SJR-2

- for sequential load switching, electric furnaces, heaters....

Staircase switch CRM-4

- staircase automatic systems, ventilators switching, for multiplace operating illumination on the staircases and halls...

Delay OFF without supply voltage CRM-82T0

- delayed back-up switch off at current failure (emergency illumination, emergency respirator)

Asymmetric cycler CRM-2H

- regular rooms ventilation, cyclic humidity exhaustion, illumination controlling, circulation pump, flash, warning appliances, regular pump down, regular irrigation via electromagnetic valve

Progammable staircase automat with signalling before switch off CRM-42

- starcaise illumination operation
- on-comming switch off signalling (flash = comfort + safety together)

Digital time switch SHT-1/2

- for controlling of all appliances that depend on real time, appliances could be controlled in regular cycles, or according to adjusted program (blocking of main door out of working hours or night) - in combination with other devices could be controlling combinated (rooms ventilation, irrigation controlling, bell in school or in church...)

Programmable digital relay PDR-2

- illumination, ventilators, contactors controlling, controlling of interlocking plans, system of time abate and blockation (billiards, pin-balls....), away control via external buttons

Twilight switch SOU-1

- outdoor illumination switching (garden illumination), flash, shop-window, hall and office illumination (switch off in desired light level, controlling of intensity)

Examples of use

Delay on star/delta CRM-2T

- motor starting more than 3 kW , electronic switchover from mode start to mode

Modular contactor VS120, VS220, VS420, VS425

- to switch circuits for supply and control of heating, lights, air-conditioning and other el. devices. Switches loads $\mathrm{AC}-1, \mathrm{AC}-3, \mathrm{AC}-7 \mathrm{a}, \mathrm{AC}-7 \mathrm{~b}, \mathrm{AC}-15$

Auxiliary plug-in relays 750,782

- to switch bigger output (load)

Mini contactor VS425

- switching of the higher loads, especially in other categories than AC1

Modular contactors VS440, VS463

- to switch supply and control circuits for heating, air-conditioning and other el. devices, switching 3-phse motors
Switches loads. A-1, AC-3, AC-7a, AC-7b, and AC-15

Digital time switch SHT-1, SHT-1/2

- for controlling of all appliances that depend on real time, in daily or weekly more

Staircase automat with dimming DIM-2

- step by step(fluent dim up, adjusted time is ON and fluent dim down (possible to adjust
permanent shine to min. brightness (everlasting light)
- block of flats (entry, halls, staircases), garden lighting

Memory relay MR-41, MR-42

- because of 2-wire parallel button connection save money, place and time during the installation
- light switching, hall, staircase, big rooms, controlling systems, automation

Switching power supply PS-R

- power supply of any devices and appliances via safe voltage with full galvanically separated from mains, power supply of driving systems, interlocking plants and ...

Controlled dimmer DIM-5

- short press ON/OFF, long press - brightness regulation, is in memory.

Other presses activate memory

- switch on and dimming of hall, staircas ...

Power relays VS

- switching of higher load than is capatity of switched element $=$ repeater
- assistant light controlling, signalling, boilers, ...

Controlling and signalling units USS

- compact dimensions, elegant design, wide range of use, configuration for request - switching and signalling in switchboard, controlling centre, automation...

Examples of use

Monitoring voltage relay HRN-33 (35)

- monitoring of mains voltage for appliances inclinable to supply tolerance

Monitoring voltage relay HRN-33 (35)

- protection of appliances against under-/overvoltage

Monitoring current relay PRI-51, PRI-32

- current-limiting relay (on one branch two appliances, which never work together), controlling systems, motors, heating, current indication, controlling of 1-phase motor run down, during the installation of main housing switchboard could be controlled via eye, if the cooker is not switched
- in connection with current transformers, it is possibel to extend current ranges up to 600 A , which makes more things possible

Examples of use

Relay monitoring power factor COS-1

- monitors power-factor in 3-phase mains / unloading of motors, pumps, lift systems

Relay monitoring sequence and failure of phases HRN-55, HRN-55N - monitoring of proper motor rotation, electric drive, etc.

Monitoring voltage relay HRN-43
control of voltage from generator, water el. plants, 3-phase control int he main - monitors and protects main's quality

Relay monitoring over-/undervoltage in 3-phase mains HRN-54N

- monitoring voltage in switchboard, protection of appliances

Monitoring voltage relay for under/vervoltage for 3-phase mains HRN-54 - confortable monitoring of 3-phase mains

Monitoring current relay PRI-41 (PRI-42)

- monitoring over-/-underload (machine, motor ...)
- monitoring consumption, diagnostics of distant appliance (short circuit, increased consump. ...)

Examples of use

Level switch HRH-1

- monitoring level in wells, tanks, pools, etc.

Level switch HRH-5

- monitoring level in well, sump, tanks, pool, silo...

Has your reservoir ever overflown? your pump
ever burnt anything while having y in y y os, you
to operate with empty tank? sooth.
probaly didn't use level switch.

Thermostat TER-3 with external sensor - control of temperature of floor heating

Thermostat for thermal protection of motors TER-7

2 stage thermostat TER-4 with 2 external sensors - control of temperature of egg. gas/electric boiler

Products in house

coming from us!

Production technology

The base of the production is a modern line disposing of SMD technology. SMD components compose of more than 80% of all components. In the year 2004 the production line was modernized distinctly and it was completed by some new machines. Herewith the accurancy improved considerably and the capacity enhanced.

1)

Printed circuit boards are placed into a cartridge and then automatically delivered to SMD production line.

3)

SMD components are mounted by pick-up machines.
Three heads with laser alignment can place up to 15,000 components an hour. This machine replaces approximately 100 workers.

5)

Hot-air furnace ERSA serves for glue hardening or to activation of soldering flux by re-melting. The furnace has 3 zones. temperature after curing on 3 rd) output) zone approx. 1400C. For flux re-melting , the starting temperature is $130^{\circ} \mathrm{C}$, middle $180^{\circ} \mathrm{C}$ and output is $280^{\circ} \mathrm{C}$.

2)

Fully automatic adhesive and flux printer distributes adhesive or flux through profile form to the place where the SMD components are then mounted. Part of this process is also 3D optic inspection of the executed operation.

4)

PCBs with mounted SMD components are inspected and forwarded to reflow.

6)

Fully automatic line is ended by a cartridge which distributes picked and cured PCBs into holders.

7)

After the classic components are manually mounted by experienced workers.

8)

Manual placing of classical components is followed by soldering in soldering unit SEHO 8135-PCS which already supports "lead free" soldering technology. Thanks to IR pre-heating, this soldering unit allows operations on PCB together with temperature sensitive components on the upper side of PCB. Soldering unit is equipped by LW soldering jet and Delta jet. These jets allow a good quality.

10)

After necessary semi-product testing on pin-testers final assembling into enclosures is executed. The actual state of completion is monitored by bar codes during the whole production process.

11)

Semi-finished PCBs are tested by this tester. It replaces visual control. By using weight board, particular pins on bottom part are in contact. Functionality of SMD components and classical components is checked. Testing one PCB set takes about 20 s .

12)

In the end the products are fully printed by laser technology. Laser can burn from upper part) side of the product) and side part (front panel and terminals) printing one piece takes about 30 s .

Support of project design

Our aim is to give a complete care to all electro- project designers.
Our activities:
Our products are a part of the following programs:

Project programs

Tecscad

BLCAD

PEchematlc

elèktrotechnika
CADELEC

TRAINING
In case our products attracted your interest, visit some of our free professional trainings in the Czech republic. Current information can be monitored at.rele.cz

INFOLINE
In case of any questions regarding use of our products for a particular project, use our info-line of technical support +420573514231. Note.: logos, names, software, hardware are protected by owner's rights.

[^0]: *When load is above 300 VA it is necessary to ensure sufficient cooling.
 Recommendation for mounting: leave a gap of min. 0.5 module (approx. $9 \mathrm{~mm} / 0.4^{\prime \prime}$) on side of the device to ensure better cooling of the device.

 Warning for DIM-14: it is not allowed to connect together loads of inductive and capacitive type in the same time.

